

Axialkolben-Verstellpumpe A10V(S)O Baureihe 31

RD 92701

Ausgabe: 06.2016 Ersetzt: 01.2012

- ► Nenngröße 18 (A10VSO)
- ► Nenngrößen 28 bis 140 (A10VO)
- Nenndruck 280 bar
- ► Höchstdruck 350 bar
- ▶ Offener Kreislauf

Merkmale

- Verstellpumpe mit Axialkolben-Triebwerk in Schrägscheibenbauart für hydrostatische Antriebe im offenen Kreislauf.
- ► Der Volumenstrom ist proportional der Antriebsdrehzahl und dem Verdrängungsvolumen.
- ► Durch die Verstellung der Schrägscheibe kann der Volumenstrom stufenlos verändert werden.
- ▶ 2 Leckageanschlüsse
- ► Gutes Ansaugverhalten
- ► Niedriges Geräuschniveau
- Hohe Lebensdauer
- ► Günstiges Leistungsgewicht
- ► Vielseitiges Reglerprogramm
- Kurze Regelzeit
- ► Der Durchtrieb ist zum Anbau von Zahnrad- und Axialkolbenpumpen bis gleicher Nenngröße geeignet, d.h. 100% Durchtrieb.

Inhalt Typenschlüssel 2 Druckflüssigkeiten 4 Betriebsdruckbereich 6 Technische Daten, Standardeinheit 7 Technische Daten, High Speed-Version 8 DG - Zweipunktverstellung, direktgesteuert 10 DR - Druckregler 11 DRG – Druckregler, ferngesteuert 12 DFR / DFR1 / DRSC - Druck-Förderstromregler 13 DFLR - Druck-Förderstrom-Leistungsregler 15 ED - Elektrohydraulische-Druckregelung 16 ER - Elektrohydraulische-Druckregelung 17 Abmessungen Nenngröße 18 bis 140 18 Abmessungen Durchtrieb 49 Übersicht Anbaumöglichkeiten 53 Kombinationspumpen A10VO + A10VO 54 Stecker für Magnete 55 Ansteuerelektronik 55 Einbauhinweise 56 Projektierungshinweise 59 Sicherheitshinweise 60

01	02	03	04	05		06	07		08	09		10	1	.1	12		13
	A10V(S)	<u>o</u> 0	U 4		7	31		_	v T	00		10		. д	12	T	10
<u> </u>		<u> </u>] 3.			•				1				
	usführung								18	28	45	71	88	100			
01	Standardaus							6 "1 \		•	•	•	•	•	•	•	
	High-Speed-	version (A	Aussere	Abmessunge	n entsp	orecnen S	tandardau	stunrung)			_	•	•	-	•	•	Н
	colbeneinhei									1	1	ı	ı		1		
02	Schrägschei	benbauar	t, verst	ellbar, Nenndi	ruck 28	30 bar, Hö	chstdruck	350 bar		•	_	_	_	-	_	-	A10VS
											•	•	•	•	•	•	A10V
	ebsart																_
03	Pumpe, offe	ner Kreisl	auf														0
Nenn	größe (NG)																1
04	Geometrisch	nes Verdrä	ängungs	svolumen, siel	he Wer	tetabelle	Seite 6 und	d 7		18	28	45	71	88	100	140	
Regel	- und Verste	leinrichtı	ung														
05	Zweipunktve	erstellung.	, direkt	gesteuert						•	•	•	•	•	•	•	DG
	Dr <u>uckregler</u>			hydraulisch						•	•	•	•	•	•	•	DR
	mit Förde	rstromreg	gler	hydraulisch						•	•	•	•	•	•	•	DFR
							n; mit Spü			•	•	•	•	•	•	•	DFR1
							· · · · · · · · ·	pülfunktior	າ	•	•	•	•	•	•	•	DRSC
				zdruckregelui			stellbar			•	•	•	•	•	•	•	EF ¹⁾
	mit Druck	abschnei	dung	hydraulisch						•	•	•	•	•	•	•	DRG
				elektrisch	egative Kennung U = 12 V			•	•	•	•	•	•	•	ED71		
				1.1.1.1	U = 24 V					•	•	•	•	•	•	•	ED72
				elektrisch	positi	ve Kennu	_	U = 12 V		•	•	•	•	•	•	•	ER71
	Drugt Färde	ratram La	istus	alor				U = 24 V		•	•	•	•	•	•	•	ER72 DFLR
	Druck-Förde	rstrom-Le	eistungs	regier							•	•	•	•	•	•	DFLK
Baure 06	Baureihe 3,	Index 1															31
		macx i															01
07	ichtung Bei Blick auf	Triebwel	ما				recht	c									R
07	Dei Diick aui	mebwei	ic				links	3									L
		ee					IIIINS										-
08	ungswerksto FKM (Fluor-l		<i>(</i>)														v
		\aut5CHUK	\ <i>J</i>								_			_			٧
Trieby				01 1 1						18	28	45	71	88	100		
09	Zahnwelle ANSI B92.1a	ı		Standardwell		la for 1 ml	B : 1			•	•	•	•	•	•	•	S
	, 101 002.10	•		wie Welle "S					goolge et	•	•	•	•	•	-	-	R
				reduzierter Durchmesser; bedingt für Durchtrieb geeignet (siehe Wertetabelle Seite 9) wie "U", höheres Drehmoment; bedingt für Durchtrieb geeig					•	•	•	•	•	•	0	U	
				wie "U", höh net (siehe W			_	t für Durch	itrieb geeig	-	•	•	•	•	•	•	W
Anba	uflansch			<u> </u>													
10	ISO 3019-1	(SAE)			2-Loch				•	•	•	•	•	•	•	С	
							i	4-Loch		_	-	_	_	_	_	•	D

1) Siehe Datenblatt 92709

01	02	03	04	05		06	07		08	09		10	1	.1	12	<u> </u>	13
	A10V(S)	0			/	31		-	V								
Ansc	hluss für Ark	eits l eitu	ıng							18	28	45	71	88	100	140	
11	SAE-Flansch	nanschlü	sse	_	ingsgewind	de	nicht	für Durcht	rieb	_	•	•	-	_	•	•	11
	nach J518 Arbeitsansc	مممثاط		metrisch	metrisch; hinten					_	-	_	•	•	_	_	41
	metrisch	illusse			ingsgewind			ırchtrieb		•	•	•	_	_	•	•	12
				metrisch; seitlich oben unten					_	_	_	•	•	_	_	42	
	SAE-Flansch	nanschlü	sse	Befestigungsgewinde nicht für Durchtrieb					_	•	•	_	_	•	•	61	
	nach J518 Arbeitsansc	hlücco		UNF; hin	JNF; hinten					_	_	_	•	•	_	_	91
	UNF	illusse		Befestigungsgewinde für Durchtrieb					•	•	•	_	-	•	•	62	
				UNF; seit	lich oben	unten				_	_	_	•	•	_	_	92
12	Flansch ISC Durchmesse			Nabe für Durchme	Zahnwelle sser	2)				18	28	45	71	88	100	140	
	ohne Durch	trieb								•	•	•	•	•	•	•	NOO
	82-2 (A)			5/8 in 9T 16/32DP					•	•	•	•	•	•	•	K01	
				3/4 in 11T 16/32DP					•	•	•	•	•	•	•	K52	
	101-2 (B)			7/8 in 13T 16/32DP					-	•	•	•	•	•	•	K68	
				1 in 15T 16/32DP					-	-	•	•	•	•	•	K04	
	127-2 (C)			1 1/4 in	14T 12/24	.DP				_	-	_	•	•	•	•	K07
				1 1/2 in	17T 12/24	.DP				_	-	_	_	_	•	•	K24
	152-4 (D)			1 3/4 in	13T 8/16E)P				_	-	-	-	_	_	•	K17 ⁴⁾
Steck	er für Magn	ete ³⁾															
13	Ohne Steck	ar (ahna	Magnet	nur bei hy	draulische	n Verstelli	ungen, oh	ne Zeiche	n)	•	•	•	•	•	•	•	
13		er (onne	. IviaBilot,			ii voistoiii	411,6011, 011	THE ESTOTION	11/	_							

• = Lieferbar • = Auf Anfrage - = Nicht lieferbar

Hinweise

- ► Beachten Sie die Projektierungshinweise auf Seite 59.
- ➤ Zusätzlich zum Typenschlüssel sind bei der Bestellung die relevanten technischen Daten anzugeben.

²⁾ Nabe für Zahnwelle nach ANSI B92.1a

³⁾ Stecker für andere elektrischen Bauteile können abweichen.

⁴⁾ Nur mit Anbauflansch D

Druckflüssigkeiten

Die Verstellpumpe A10V(S)O ist für den Betrieb mit Mineralöl HLP nach DIN 51524 konzipiert.

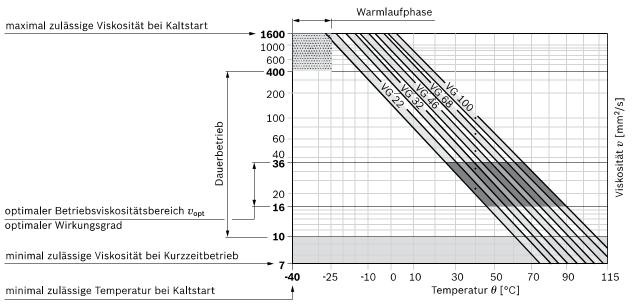
Anwendungshinweise und Anwendungsforderungen zu den Druckflüssigkeiten entnehmen sie vor der Projektierung den folgenden Datenblättern:

- ▶ 90220: Hydraulikflüssigkeiten auf Basis von Mineralölen und artverwandten Kohlenwasserstoffen
- ▶ 90221: Umweltverträgliche Hydraulikflüssigkeiten
- ▶ 90222: HFD Hydraulikflüssigkeiten (zulässige technische Daten siehe Datenblatt 90225)

Erläuterung zur Auswahl der Druckflüssigkeit

Die Auswahl der Druckflüssigkeit soll so erfolgen, dass im Betriebstemperaturbereich die Betriebsviskosität im optimalen Bereich liegt ($\nu_{\rm opt}$ siehe Auswahldiagramm).

Beachten


An keiner Ste**ll**e der Komponente darf die Temperatur höher als 115 °C sein. Für die Viskositätsbestimmung im Lager ist die in der Tabelle angegebene Temperaturdifferenz zu berücksichtigen.

Sind obige Bedingungen bei extremen Betriebsparametern nicht einzuhalten, bitte Rücksprache mit dem zuständigen Bosch Rexroth Mitarbeiter.

Viskosität und Temperatur der Druckflüssigkeiten

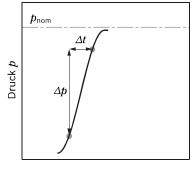
	Viskosität	Temperatur	Bemerkung
Kaltstart	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 1$ min, ohne Last ($p \le 30$ bar), $n \le 1000$ min ⁻¹
zulässige Tempe	eraturdifferenz	$\Delta T \le 25 \text{ K}$	zwischen Axialkolbeneinheit und Druckflüssigkeit
Warmlaufphase	ν < 1600 bis 400 mm²/s	θ = -40 °C bis -25 °C	Ausführliche Informationen zum Einsatz bei tiefen Temperaturen beachten, siehe Datenblatt 90300-03-B
Dauerbetrieb	ν = 400 bis 10 mm ² /s		dies entspricht z.B. bei VG 46 einem Temperaturbereich von +5°C bis +85°C (siehe Auswahldiagramm)
		θ = -25 °C bis +110 °C	gemessen am Anschluss \mathbf{L} , \mathbf{L}_1 zulässigen Temperaturbereich des Wellendichtrings beachten (ΔT = ca. 5 K zwischen Lager/Wellendichtring und Anschluss \mathbf{L} , \mathbf{L}_1)
	$v_{\rm opt}$ = 36 bis 16 mm ² /s		optimaler Betriebsviskositats- und Wirkungsgradbereich
Kurzzeitbetrieb	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 1 \text{ min}, p < 0.3 \cdot p_{\text{nom}}$

▼ Auswahldiagramm

Filterung der Druckflüssigkeit

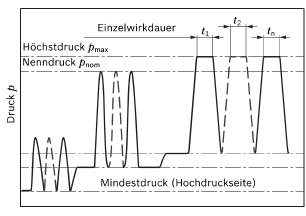
Mit feinerer Filterung verbessert sich die Reinheitsklasse der Druckflüssigkeit, wodurch die Lebensdauer der Axialkolbeneinheit zunimmt.

Mindestens einzuhalten ist die Reinheitsklasse von 20/18/15 nach ISO 4406.


Bei sehr hohen Temperaturen der Druckflüssigkeit (90 °C bis maximal 115 °C) ist mindestens die Reinheitsklasse 19/17/14 nach ISO 4406 erforderlich.

Können obige Klassen nicht eingehalten werden, bitte Rücksprache.

Betriebsdruckbereich


Druck am Anschluss für Arbeitsleitung	В	Definition					
Nenndruck $p_{\sf nom}$	280 bar	Der Nenndruck entspricht dem maximalen Auslegungsdruck.					
Höchstdruck $p_{\sf max}$	350 bar	Der Höchstdruck entspricht dem maximalen Betriebsdruck innerhalb der Einzel-					
Einzelwirkdauer	2 ms	wirkdauer. Die Summe der Einzelwirkdauern darf die Gesamtwirkdauer nicht					
Gesamtwirkdauer	300 h	□ überschreiten.					
Mindestdruck $p_{B \; abs}$ (Hochdruckseite)	10 bar ¹⁾	Mindestdruck auf der Hochdruckseite (B) der erforderlich ist, um eine Beschädigung der Axialkolbeneinheit zu verhindern.					
Druckänderungsgeschwindigkeit $R_{ m A\ max}$	16000 bar/s	Maximal zulässige Druckaufbau- und Druckabbaugeschwindigkeit bei einer Druckänderung über den gesamten Druckbereich.					
Druck am Sauganschluss S (Eingang)							
Mindestdruck p_{Smin} Standard	0.8 bar absolut	Mindestdruck am Sauganschluss S (Eingang) der erforderlich ist, um eine Beschädigung der Axialkolbeneinheit zu verhindern. Der Mindestdruck ist abhängig von Drehzahl und Verdrängungsvolumen der Axialkolbeneinheit.					
Maximaler Druck p_{Smax}	10 bar absolut ²⁾						
Leckagedruck am Anschluss L, L ₁							
Maximaler Druck p_{Lmax}	2 bar absolut ²⁾	Maximal 0.5 bar höher als Eingangsdruck am Anschluss ${\bf S}$, jedoch nicht höher als $p_{\rm Lmax}$. Eine Leckageleitung zum Tank ist erforderlich.					

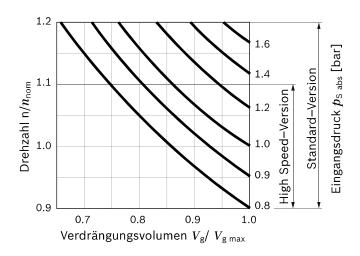
▼ Druckänderungsgeschwindigkeit R_{A max}

Zeit t

▼ Druckdefinition

Zeit t

Gesamtwirkdauer = $t_1 + t_2 + ... + t_n$


- 1) Niedrigerer Druck zeitabhängig, bitte Rücksprache
- 2) Andere Werte auf Anfrage

Hinweis

Betriebsdruckbereich gültig beim Einsatz von Hydraulikflüssigkeiten auf Basis von Mineralölen. Werte für andere Druckflüssigkeiten bitte Rücksprache.

Minimal zulässiger Eingangsdruck am Sauganschluss S bei Drehzahlerhöhung

Um eine Beschädigung der Pumpe (Kavitation) zu verhindern muss am Sauganschluss **S** ein Mindesteingangsdruck gewährleistet sein. Die Höhe des mindest Eingangsdruckes ist von der Drehzahl und dem Verdängungsvolumen der Verstellpumpe abhängig.

Bei Dauerbetrieb in Überdrehzahl über n_{nom} ist eine Lebensdauerreduzierung aufgrund von Kavitationserosion zu erwarten.

Technische Daten, Standardeinheit

Nenngröße		NG		18	28	45	71	88	100	140
Verdrängungsvolu pro Umdrehung	Verdrängungsvolumen geometrisch, pro Umdrehung		cm ³	18	28	45	71	88	100	140
Drehzahl	bei $V_{\sf gmax}$	n_{nom}	min ⁻¹	3300	3000	2600	2200	2100	2000	1800
maximal ¹⁾	bei $V_{\rm g}$ < $V_{\rm g max}^{2)}$	$n_{max\;zul}$	min ⁻¹	3900	3600	3100	2600	2500	2400	2100
Volumenstrom	bei n_{nom} und $V_{g\;max}$	$q_{ m v\; max}$	l/min	59	84	117	156	185	200	252
	bei $n_{\rm E}$ = 1500 min $^{-1}$ und $V_{ m g\;max}$	$q_{\scriptscriptstyle{ extsf{VE max}}}$	l/min	27	42	68	107	132	150	210
Leistung	bei n_{nom},V_{gmax}	P_{max}	kW	28	39	55	73	86	93	118
bei Δp = 280 bar	bei $n_{\rm E}$ = 1500 min $^{-1}$ und $V_{\rm g\;max}$	$P_{E\;max}$	kW	12.6	20	32	50	62	70	98
Drehmoment	Δp = 280 bar	T_{max}	Nm	80	125	200	316	392	445	623
bei V_{gmax} und	Δp = 100 bar	T	Nm	30	45	72	113	140	159	223
Verdrehsteifigkeit	S	c	Nm/rad	11087	22317	37500	71884	71884	121142	169437
Triebwelle	R	c	Nm/rad	14850	26360	41025	76545	76545	_	
	U	с	Nm/rad	8090	16695	30077	52779	52779	91093	-
	W	c	Nm/rad	_	19898	34463	57460	57460	101847	165594
Massenträgheitsm	Massenträgheitsmoment Triebwerk		kgm²	0.00093	0.0017	0.0033	0.0083	0.0083	0.0167	0.0242
Winkelbeschleunigung maximal ³⁾		α	rad/s²	6800	5500	4000	2900	2600	2400	2000
Füllmenge		V	I	0.4	0.7	1.0	1.6	1.6	2.2	3.0
Gewicht ohne Durchtrieb (ca.)			l	12.9	18	23.5	35.2	35.2	49.5	65.4
Gewicht mit Durch	ntrieb (ca.)	m	kg	13.8	19.3	25.1	38	38	55.4	74.4

Ermittlung der Kenngrößen										
Volumenstrom	~ -	$V_{\rm g} \times n \times \eta_{\rm v}$		[I/min]						
volumenstrom	<i>q</i> _v =	1000		[1/11111]						
Drehmoment	T -	$V_{g} imes \Delta p$		[Nm]						
Dreiimoment	1 -	$20 \times \pi \times \eta_{mh}$		נואווון						
Loistung	р -	$2 \pi \times T \times n$	$q_{v} \times \Delta p$	– [kW]						
Leistung	P =	60000	$=$ $600 \times \eta_{\rm t}$	— [KVV]						

Legende

 $V_{\rm g}$ Verdrängungsvolumen pro Umdrehung [cm 3]

 Δp Differenzdruck [bar]

n Drehzahl [min⁻¹]

 $\eta_{
m v}$ Volumetrischer Wirkungsgrad

 $\eta_{
m hm}$ Hydraulisch-mechanischer Wirkungsgrad

 $\eta_{\rm t}$ Gesamtwirkungsgrad ($\eta_{\rm t}$ = $\eta_{\rm v} \times \eta_{\rm hm}$)

Hinweis

- ► Theoretische Werte, ohne Wirkungsgrade und Toleranzen; Werte gerundet
- ► Ein Überschreiten der Maximal- bzw. Unterschreiten der Minimalwerte kann zum Funktionsverlust, einer Lebensdauerreduzierung oder zur Zerstörung der Axialkolbeneinheit führen. Bosch Rexroth empfiehlt die Überprüfung der Belastung durch Versuch oder Berechnung/ Simulation und Vergleich mit zulässigen Werten.

¹⁾ Die Werte gelten:

[–] bei absolutem Druck $p_{
m abs}$ = 1 bar am Sauganschluss ${f S}$

[–] für den optimalen Viskositätsbereich von $v_{\rm opt}$ = 36 bis 16 mm²/s

⁻ bei Druckflüssigkeit auf Basis von Mineralölen

²⁾ Bei Drehzahlerhöhung bis $n_{\rm max\,zul}$ bitte Diagramm Seite 6 beachten.

³⁾ Der Gültigkeitsbereich liegt zwischen der minimal erforderliche und der maximal zulässigen Drehzahl. Sie gilt für externe Anregugen (z. B. Dieselmotor 2- bis 8-fache Drehfrequenz, Gelenkwelle 2-fache Drehfrequenz). Der Grenzwert gilt nur für eine Einzelpumpe. Die Belastbarkeit der Anschlussteile muss berücksichtigt werden

Technische Daten, High Speed-Version

Nenngröße		NG		45	71	100	140
Verdrängungsvolu	men geometrisch, pro Umdrehung	$V_{g\;max}$	cm ³	45	71	100	140
Drehzahl	bei V_{gmax}	n_{nom}	min ⁻¹	3000	2550	2300	2050
maximal ¹⁾	bei $V_{\rm g}$ < $V_{\rm gmax}^{2)}$	$n_{max\;zul}$	min ⁻¹	3300	2800	2500	2200
Volumenstrom	bei n_{nom} und V_{gmax}	q_{vmax}	l/min	135	178	230	287
Leistung	bei n_{nom} , $V_{\text{g max}}$ und Δp = 280 bar	P_{max}	kW	63	83	107	134
Drehmoment	Δp = 280 bar	T _{max}	Nm	200	316	445	623
bei V_{gmax} und	Δp = 100 bar	T	Nm	72	113	159	223
Verdrehsteifigkeit	S	С	Nm/rad	37500	71884	121142	169537
Triebwelle	R	c	Nm/rad	41025	76545	_	_
	U	c	Nm/rad	30077	52779	91093	=
	W	c	Nm/rad	34463	57460	101847	165594
Massenträgheitsm	oment Triebwerk	$J_{\sf TW}$	kgm²	0.0033	0.0083	0.0167	0.0242
Winkelbeschleunigung maximal ³⁾		α	rad/s²	4000	2900	2400	2000
Füllmenge		V	I	1.0	1.6	2.2	3.0
Gewicht ohne Durchtrieb (ca.)			1	23.5	35.2	49.5	65.4
Gewicht mit Durchtrieb (ca.)		m	kg	25.1	38	55.4	74.4

Hinweis

- ► Theoretische Werte, ohne Wirkungsgrade und Toleranzen; Werte gerundet
- ► Ein Überschreiten der Maximal- bzw. Unterschreiten der Minimalwerte kann zum Funktionsverlust, einer Lebensdauerreduzierung oder zur Zerstörung der Axialkolbeneinheit führen. Bosch Rexroth empfiehlt die Überprüfung der Belastung durch Versuch oder Berechnung/ Simulation und Vergleich mit zulässigen Werten.

¹⁾ Die Werte gelten:

[–] bei absolutem Druck $p_{
m abs}$ = 1 bar am Sauganschluss ${f S}$

[–] für den optimalen Viskositätsbereich von $v_{\rm opt}$ = 36 bis 16 mm²/s

[–] bei Druckflüssigkeit auf Basis von Mineralölen

²⁾ Bei Drehzahlerhöhung bis $n_{\rm max\ zul}$ bitte Diagramm Seite 6 beachten.

³⁾ Der Gültigkeitsbereich liegt zwischen der minimal erforderliche und der maximal zulässigen Drehzahl. Sie gilt für externe Anregugen (z. B. Dieselmotor 2- bis 8-fache Drehfrequenz, Gelenkwelle 2-fache Drehfrequenz). Der Grenzwert gilt nur für eine Einzelpumpe. Die Belastbarkeit der Anschlussteile muss berücksichtigt werden