

Außenzahnradpumpe High Performance AZPN

- ▶ Plattform N
- ► Konstantes Verdrängungsvolumen
- ▶ Nenngröße 20 ... 36
- ▶ Dauerdruck bis 250 bar
- ▶ Intermittierender Druck bis 280 bar

Merkmale

- Gleichbleibend hohe Qualität aufgrund Großserienproduktion
- ► Hohe Lebensdauer
- ► Gleitlager für hohe Belastungen
- Antriebswellen entsprechend ISO oder SAE und kundenspezifische Lösungen
- ► Leitungsanschlüsse: Anschlussflansche oder Einschraubgewinde
- Kombinationen von mehreren Pumpen möglich

2
4
8
15
20
30
31
32

Produktbeschreibung

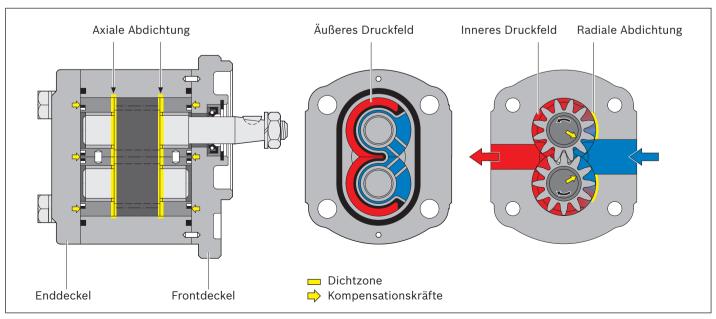
Allgemein

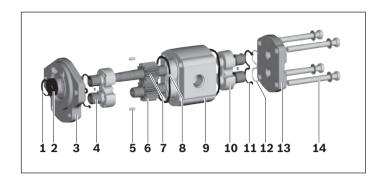
Die zentrale Aufgabe von Außenzahnradpumpen besteht in der Umwandlung von mechanischer Energie (Drehmoment und Drehzahl) in hydraulische Energie (Volumenstrom und Druck). Zur Reduzierung von Wärmeverlusten besitzen Rexroth Außenzahnradeinheiten sehr hohe Wirkungsgrade. Diese werden durch eine druckabhängige Spaltabdichtung und hochpräzise Fertigungstechnik realisiert.

Rexroth-Außenzahnradpumpen gibt es in vier Baugrößen: Plattform B, F, N und G. Dabei werden innerhalb einer Plattform die unterschiedlichen Nenngrößen durch unterschiedliche Zahnradbreiten realisiert. Die Pumpen stehen in den Ausführungen Standard, High-Performance, SILENCE und SILENCE PLUS zur Verfügung. Weitere Ausführungsvarianten entstehen durch verschiedene Flansche, Wellen, Ventilaufbauten und Mehrfach-Pumpenkombinationen.

Förderprinzip

Die bei der Drehbewegung aus dem Zahneingriff auseinander laufenden Zähne, lassen die Zahnkammern frei werden. Der dadurch entstehende Unterdruck, sowie der atmosphärische Druck auf dem Druckflüssigkeitsspiegel im Behälter bewirken, dass der Pumpe aus dem Behälter Druckflüssigkeit zuläuft. Diese Druckflüssigkeit füllt die Zahnkammern und wird in diesen in Pfeilrichtung (siehe Schnittzeichnung) am Gehäuse entlang von der Saug- zur Druckseite befördert. Hier greifen die Zähne wieder ineinander, verdrängen die Druckflüssigkeit aus den Zahnkammern und verhindern ein Rückströmen zum Saugraum.


Konstruktive Ausführung


Die Außenzahnradpumpe besteht im Wesentlichen aus dem Zahnradpaar, das in Lagerbuchsen gelagert ist, sowie dem Gehäuse mit einem Frontdeckel und einem Enddeckel.

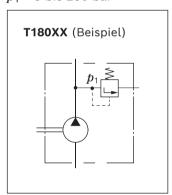
Durch den Frontdeckel wird die, in der Regel mit einem Wellendichtring abgedichtete, Triebwelle durchgeführt. Die Lagerkräfte werden von Gleitlagern aufgenommen. Diese sind für hohe Drücke ausgelegt und haben ausgezeichnete Notlaufeigenschaften – speziell bei niedrigen Drehzahlen.

Die Zahnräder haben 12 Zähne. Das hält die Förderstrompulsation und Geräuschemission niedrig. Die Abdichtung der Druckräume erfolgt mit betriebsdruckabhängigen Kräften. Daraus ergibt sich ein optimaler Wirkungsgrad. Der in den Zahnkammern entstehende Betriebsdruck wird in speziell ausgelegten Druckfeldern auf die Außenseite der Lagerbuchsen geführt, sodass diese dichtend gegen die Zahnräder gedrückt werden. Die beaufschlagten Druckfelder werden dabei durch spezielle Dichtungen begrenzt. Die Abdichtung am Umfang der Zahnräder zum Gehäuse hin wird durch kleinste Spalte sichergestellt, die sich druckabhängig zwischen Zahnrädern und Gehäuse einstellen.

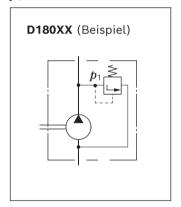
Aufbau Außenzahnradpumpe

- I Sicherungsring
- 2 Wellendichtring
- 3 Frontdeckel
- 4 Gleitlager
- 5 Zentrierstift
- 6 Zahnrad
- **7** Triebwelle

- 8 Gehäusedichtring
- **9** Pumpengehäuse
- 10 Lagerbuchse
- 11 Axialfelddichtung
- 12 Stützelement
- 13 Enddeckel
- 14 Torxschrauben


Zahnradpumpen mit integrierten Ventilen

Zur Verringerung des Verrohrungsaufwandes kann ein Stromregelventil oder ein Druckbegrenzungsventil im Deckel der Zahnradpumpe integriert werden. Solche Lösungen finden z. B. zur Druckölversorgung von Servolenkungen Verwendung. Die Pumpe liefert unabhängig von der Drehzahl einen konstanten Volumenstrom bzw. einen maximalen Druck. Der Reststrom kann intern an den Sauganschluss oder extern weiteren Verbrauchern zugeführt werden.


Druckbegrenzungsventil, Druckabführung extern

 $p_1 = 5 \text{ bis } 250 \text{ bar}$

Druckbegrenzungsventil, Druckabführung in Saugleitung

 $p_1 = 5 \text{ bis } 250 \text{ bar}$

Typenschlüssel

Typenschlüssel Einzelpumpe

01		02		03	04		05	06	07	08	09	10	11	12	13	3		14
ΑZ	P	N	-			-											-	
Auße	nzahn	radeiı	nheit															
01	Auße	nzahn	radpum	ре														AZP
Baure	eihe																	
02	High	Perfo	rmance,	Plattfor	m N													N
Serie	!																	
03	Geha	usebr	eite 92	mm														1
	Geha	usebr	eite 110) mm														2
Versi	on																	
04	Phos	phatie	rt, vers	tiftet														1
	Korro	sions	geschüt	zt, verst	iftet ¹⁾													2
Nenn	größe	(NG)																
05	Geon	netriso	ches Ve	rdrängun	igsvolume	en V_{g} [c	m³], sieł	ne techn	ische Da	ten		02	0 022	025	028	032	036]
Drehi	richtu	ng																
06	Bei B	Bei Blick auf Triebwelle						rechts										R
							links										L	
Trieb	welle							Passen	der Fron	tdeckel			,					
07		sche V		1:	5			В										С
	Zweif	flächig	g, Klaue					М										N
	Zahn	welle			E J744 22			С										D
				SAE	E J744 19	9-4 11T		С										Р
Front	decke																	
08		teckfla			00 mm			-										В
	2-Loc	chflans	sch		2.2 mm				44 82-2 /									R
	0.1	- -	- 4.5		01.6 mm				44 101-2	В								С
			stigung	<u> </u>	2 mm			mit O-F	King				,					М
	ngsan							- 1 -				02	0 022	025	028	032	036	
09					nde, met			÷÷:				•	•	•	•	•	•	07
	Rechteckflansch SAE Gewinde, UNC					• • •						•	•	•	•	15		
	Quad	dratisc	her Flar	nsch				<u> </u>				•	•	•	•	•	•	20
Dicht	ungsv	verkst	off															
10					ellendicht	ring in I	-KM (Flu	or-Kauts	schuk)									К
	NBR	(Nitril	-Kautsc	huk)														М

FKM (Fluor-Kautschuk)

¹⁾ Korrosionsgeschützte Ausführung, Details siehe "Technische Daten"

01	02		03	04		05	06	07	08	09	10	11	12	13		14	
AZP	N	-			-										_		

Enddeckel

1	1	Ohne Ventil (Standard)			В
		Mit Druckbegrenzungsventil	Druckabführung	extern	Т
				intern	D

Ventileinstellung Druckbegrenzungsventil (Angabe nur erforderlich bei Enddeckel mit Druckbegrenzungsventil)

1:	2	Ohne Druckbegrenzungsventil	XXX
		Öffnungsdruck in bar, 3-stellig, z. B. 180 bar	180

Ventileinstellung Stromregelventil (Angabe nur erforderlich bei Enddeckel mit Stromregelventil)

13	Ohne Stromregelventil	XX	
	Volumenstrom in l/min, 2-stellig, z. B. 9 l/min	09]

Sonderausführung

	14	Sonderausführung ¹⁾		sxxxx	
--	----	--------------------------------	--	-------	--

• = Lieferbar - = Nicht lieferbar

Hinweis

- ► Es sind nicht alle Varianten nach dem Typenschlüssel möglich.
- ▶ Bitte wählen Sie die gewünschte Pumpe anhand der Auswahltabellen (Vorzugstypen) oder nach Rücksprache mit Bosch Rexroth aus.
- ► Auf Anfrage sind Sonderoptionen möglich

¹⁾ Für weitere Informationen zu Sonderausführungen. bitte Rücksprache.

Typenschlüssel Mehrfachpumpe

01	02		03	04		05	06	07	08	09	10	11	12
AZP		_			_								

01	Außenzahnradpumpe			AZP
Baur	eihe ¹⁾			
02	High-Performance	1.0 7.1 cm ³ /U	Datenblatt 10088	В
		4.0 28 cm ³ /U	Datenblatt 10089	F
		20.0 36 cm ³ /U	Datenblatt 10091	N
		22.5 100 cm ³ /U	Datenblatt 10093	G
	SILENCE	4.0 28 cm ³ /U	Datenblatt 10095	S
		20.0 36 cm ³ /U	Datenblatt 10092	Т
		22.5 63 cm ³ /U	Datenblatt 10098	U
	SILENCE PLUS	12.0 28 cm ³ /U	Datenblatt 10094	J
Serie	(entsprechend Datenblatt von	Pumpenstufe 1)		
03	Standard Lager	· · · · · · · · · · · · · · · · · · ·		1
	Verstärkte Lager			2
Versi	on (entsprechend Datenblatt vo	on Pumpenstufe 1)		
04	Phosphatiert, verstiftet			1
	Korrosionsgeschützt, verstiftet			2
Nonr	größe (NG) ²⁾			
05	Entsprechend Datenblatt der	einzelnen Baureihen		
		- Dadremen		
	richtung			
06	Bei Blick auf Triebwelle	rechts		R
		links		L
	welle (bezogen auf Pumpenstu			
07	Entsprechend Datenblatt von	Pumpenstufe 1		
Fron	t deckel (bezogen auf Pumpenst	ufe 1)		
80	Entsprechend Datenblatt von	Pumpenstufe 1		
Leitu	ngsanschluss (je Pumpenstufe)	3)		
09	Entsprechend Datenblatt der e			
Dich	tungswerkstoff			
10	NBR (Nitril-Kautschuk)			М
. •	FKM (Fluor-Kautschuk)			Р
		ndichtring in FKM (Fluor-Kautsch	uk)	K
	eckel (bezogen auf letzte Pump		,	
اداله موات				

sxxxx

Sonderausführung

12 Sonderausführung

¹⁾ Pro Pumpenstufe ist ein Buchstabe zu wählen, z. B. 3-fach Pumpe AZPJ + AZPJ + AZPB: **JJB**

²⁾ Pro Pumpenstufe ist ein Zahlenwert zu wählen, z. B. 3-fach Pumpe **028/016/2.0**

³⁾ Pro Pumpenstufe ist ein Zahlenwert zu wählen, z. B. 3-fach Pumpe **202020**

Hinweis

- ► Es sind nicht alle Varianten nach dem Typenschlüssel möglich.
- ► Bitte wählen Sie die gewünschte Pumpe anhand der Auswahltabellen (Vorzugstypen) oder nach Rücksprache mit Bosch Rexroth aus.
- ► Auf Anfrage sind Sonderoptionen möglich.

Beispiel 3-fach-Pumpe:

AZPN...020... + AZPN...025... + AZPF...016...

01	02		03	04		05	06	07	08	09	10	11
AZP	NNF	-	1	2	-	020/025/016	R	D	С	20202020	K	В

Technische Daten

Wertetabelle

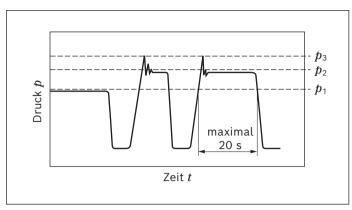
Nenngröße					20	22	25	28	32	36
Serie						Seri	e 1x			
Verdrängungsvolumen	geometrisch,	pro Umdrehung	V_{g}	cm³	20	22.5	25	28	32	36
Druck am Sauganschlu	ıss S ¹⁾	absolut	p_{e}	bar			0.7	3		
Dauerdruck maximal			p_1	bar	230	230	230	210	180	160
Intermittierender Druc	k maximal		p_2	bar	250	250	250	230	200	180
Druckspitze maximal			p_3	bar	270	270	270	250	220	200
		<i>p</i> < 100 bar	n_{min}	min ⁻¹	500	500	500	500	500	500
Drehzahl minimal bei	$v = 12 \text{ mm}^2/\text{s}$	p = 100 180 bar	n_{min}	min ⁻¹	600	600	600	600	600	600
Drenzant minimat bei		p = 180 bar p ₂	n_{min}	min ⁻¹	800	800	800	800	800	800
1	v = 25 mm²/s	bei p_2	n_{min}	min ⁻¹	500	500	500	500	500	500
Drehzahl maximal		bei p_2	$n_{\sf max}$	min ⁻¹	3000	3000	3000	2800	2800	2800

Nenngröße				20	22	25	28	32	36	
Serie			Serie 2x							
Verdrängungsvolumer	geometrisch, pro Umdrehung	V_{g}	cm³	20	22.5	25	28	32	36	
Druck am Sauganschl	uss S ¹⁾ absolut	p_{e}	bar			0.7	3			
Dauerdruck maximal		p_1	bar	250	250	250	230	210	180	
Intermittierender Dru	ck maximal	p_2	bar	280	280	280	260	240	210	
Druckspitze maximal		p ₃	bar	300	300	300	280	260	230	
	<i>p</i> < 100 bar	n_{min}	min ⁻¹	500	500	500	500	500	500	
Dashashi:	$v = 12 \text{ mm}^2/\text{s} \ p = 100 \dots 180 \text{ bar}$	n_{min}	min ⁻¹	600	600	600	600	600	600	
Drehzahl minimal bei	$p = 180 \text{ bar } p_2$	n_{min}	min ⁻¹	800	800	800	800	800	800	
	$v = 25 \text{ mm}^2/\text{s} \text{ bei } p_2$	n_{min}	min ⁻¹	500	500	500	500	500	500	
Drehzahl maximal	bei p_2	$n_{\sf max}$	min ⁻¹	3000	3000	3000	2800	2800	2800	

Allgemeine technische Daten

Masse	m	kg	Siehe Kapitel "Abmessungen"		
Einbaulage			Keine Einschränkungen		
Befestigungsart			Flansch- oder Durchschraubbefestigung mit Einpass		
Leitungsanschlüsse			Siehe Kapitel "Abmessungen"		
Drehrichtung, bei Blick auf Triebwelle			Rechts bzw. links; die Pumpe darf nur in der angegebenen Richtung drehen		
Triebwellenbelastung			Axiale und radiale Kräfte nur nach Rücksprache		
		°C	-30 +80 mit NBR-Dichtungen (NBR = Nitril-Kautschuk)		
Umgebungstemperaturb	ereicii <i>t</i>	C	-20 +110 mit FKM-Dichtungen (FKM = Fluor-Kautschuk)		

Korrosionsschutz


Version 1 (phosphatiert): Einheit mit geringem Korrosionsschutz	Oberfläche dient als Schutz gegen Flugrost beim Transport bzw. als Grundierung zum Lackieren				
Version 2 (verzinkt, passiviert): Einheit mit Korrosionsschutz	Korrosions- und Rostgrad in Anlehnung an DIN EN ISO 9227	Testdauer 96 h: kein Rotrost			

Hinweis

- ► Beachten Sie die geltenden Sicherheitsanforderungen der Gesamtanlage.
- ► Bei Anwendungen mit häufigen Lastwechseln bitte Rücksprache.

¹⁾ Bei Tandempumpen darf die saugseitige Druckdifferenz zwischen den einzelnen Pumpenstufen maximal 0.5 bar betragen.

Druckdefinition

 p_1 : Dauerdruck maximal

 p_2 : Intermittierender Druck maximal

 p_3 : Druckspitze maximal

Ermittlung der Kenngrößen

Volumenstrom

$$q_{\rm v}$$
 = $\frac{V_{\rm g} \times n \times \eta_{\rm v}}{1000}$

[l/min]

Drehmoment

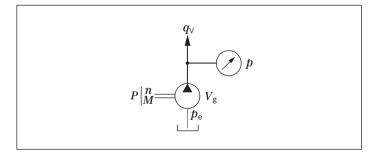
$$M = \frac{V_{\rm g} \times \Delta p}{20 \times \pi \times \eta_{\rm hm}}$$

Leistung

$$P = \frac{2 \pi \times M \times n}{60000} = \frac{q_{\text{V}} \times \Delta p}{600 \times \eta_{\text{t}}}$$

Legende

 $V_{\rm g}$ Verdrängungsvolumen pro Umdrehung [cm³]


 Δp Differenzdruck [bar]

n Drehzahl [min⁻¹]

 η_{v} Volumetrischer Wirkungsgrad

 $\eta_{
m hm}$ Hydraulisch-mechanischer Wirkungsgrad

 $\eta_{\rm t}$ Gesamtwirkungsgrad ($\eta_{\rm t}$ = $\eta_{\rm v} \cdot \eta_{\rm hm}$)

Hinweis

▶ Diagramme zur überschlägigen Berechnung finden Sie im Kapitel "Diagramme/Kennlinien".

Druckflüssigkeit

Die Außenzahnradeinheit ist für den Betrieb mit Mineralöl HLP nach DIN 51524, 1-3 konzipiert. Bei höherer Belastung empfiehlt Bosch Rexroth jedoch mindestens HLP nach DIN 51524, Teil 2.

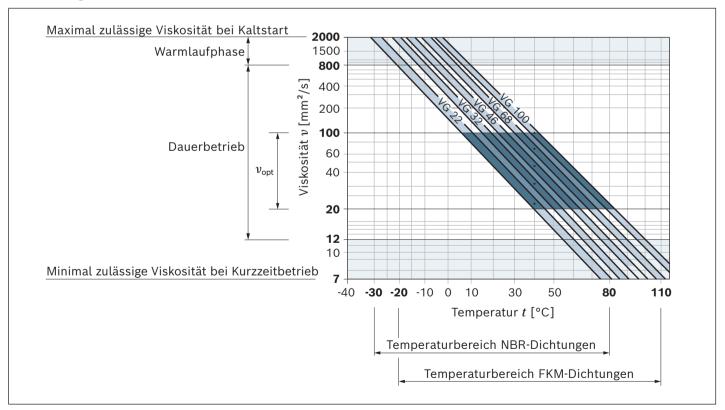
Anwendungshinweise und Anwendungsanforderungen zur Auswahl der Hydraulikflüssigkeit, Verhalten im Betrieb sowie Entsorgung und Umweltschutz entnehmen Sie vor der Projektierung folgendem Datenblatt:

▶ 90220: Hydraulikflüssigkeiten auf Basis von Mineralölen und artverwandten Kohlenwasserstoffen

Auswahl der Druckflüssigkeit

Bosch Rexroth bewertet Hydraulikflüssigkeiten über das Fluid Rating gemäß Datenblatt 90235.

Im Fluid Rating positiv bewertete Hydraulikflüssigkeiten finden Sie im folgenden Datenblatt:

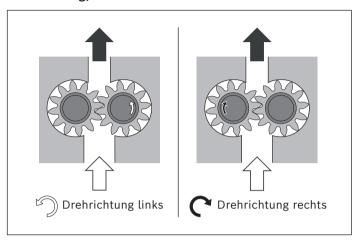

▶ 90245: Bosch Rexroth Fluid Rating List für Rexroth-Hydraulikkomponenten (Pumpen und Motoren)
Die Auswahl der Druckflüssigkeit soll so erfolgen, dass im Betriebstemperaturbereich die Betriebsviskosität im optimalen Bereich liegt (vopt siehe Auswahldiagramm).

Andere Hydraulikflüssigkeiten auf Anfrage.

Viskosität und Temperatur der Druckflüssigkeiten

Viskositätsbereich	
Im Dauerbetrieb zulässig	ν = 12 800 mm²/s
Im Dauerbetrieb empfohlen	ν _{opt} = 20 100 mm²/s
Bei Kaltstart zulässig	ν _{max} ≤ 2000 mm²/s
Temperaturbereich	
Mit NBR-Dichtungen (NBR = Nitril-Kautschuk)	t = -30 °C +80 °C
Mit FKM-Dichtungen (FKM = Fluor-Kautschuk)	t = -20 °C +110 °C

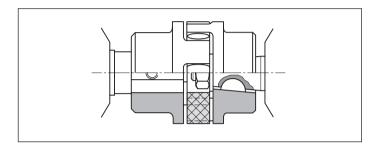
Auswahldiagramm



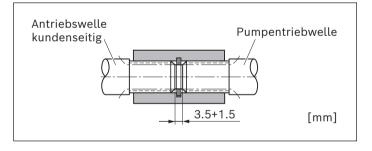
Die Hinweise zur Filterung der Druckflüssigkeit sind zu beachten (siehe Kapitel Projektierungshinweise).

Drehrichtung

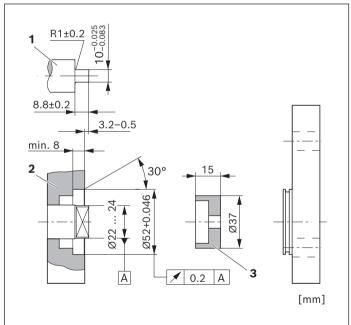
Die Maßzeichnungen im Kapitel "Abmessungen" zeigen Pumpen für Drehrichtung rechts. Für Drehrichtung links ändert sich die Lage der Triebwelle bzw. die Lage von Saug- und Druckanschluss.


Drehrichtung, bei Blick auf Triebwelle

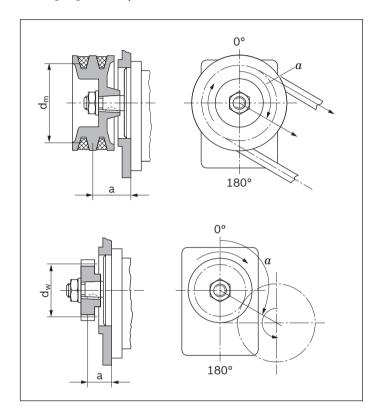
Antriebe


1. Elastische Kupplungen

- ▶ Die Kupplung darf keine radialen und axialen Kräfte auf die Pumpe übertragen.
- ▶ Die Rundlaufabweichungen von der Welle zum Einpass dürfen maximal 0.2 mm betragen.
- ► Zulässige Wellenverlagerungen siehe Montagehinweise der Kupplungshersteller.


2. Kupplungshülse

- ► Anzuwenden bei Zahnwellenprofil nach DIN und SAE
- ► Achtung: Keine radialen und axialen Kräfte auf Pumpenwelle und Kupplungshülse zulässig. Kupplungshülse muss axial frei beweglich sein.
- ► Abstand Pumpentriebwelle kundenseitige Antriebswelle 3.5+1.5 mm.
- ▶ Einbauraum für Sicherungsring beachten.
- ► Schmierung durch Ölbad oder Ölnebel erforderlich


3. Kupplungsklaue

- ► Für direkten Anbau der Pumpe an Elektro- oder Verbrennungsmotor, Getriebe usw.
- ► Pumpentriebwelle mit spezieller Kupplungsklaue und Mitnehmer (3) (Lieferumfang siehe Angebotszeichnung)
- ► Keine Wellenabdichtung
- ► Einbau antriebsseitig und Abdichtung entsprechend folgenden Empfehlungen und Abmessungen
- ► Kundenseitige Antriebswelle (1)
 - Einsatzstahl DIN EN 10084, z. B. 20MnCrS5 einsatzgehärtet 1.0 mm tief; HRA 83±2
 - Lauffläche Dichtring drallfrei geschliffen R_t ≤ 4 μm
- ► Kundenseitiger Radialwellendichtring (2)
 - Mit Gummiummantelung vorsehen (siehe DIN 3760, Form AS oder doppellippigen Ring)
 - Einbaukanten mit 15°-Schräge vorsehen bzw. Wellendichtring mit Schutzhülse montieren

4. Keilriemen und gerades Zahnrad oder schrägverzahnte Zahnradantriebe ohne Vorsatzlager

Bei Antrieb durch Keilriemen bzw. Zahnrad bitten wir um Rückfrage mit Angabe der Einsatzbedingungen und der Anbauverhältnisse (Maß a, d_m , d_w und Winkel α). Bei schrägverzahnten Zahnradantrieben ist die Angabe des Schrägungswinkel β zusätzlich erforderlich.

Maximal übertragbare Antriebsdrehmomente

Zahnwellen

Trieby	velle	$M_{\sf max}$	Nenn- größe	p _{2 max} Serie 1x	p _{2 max} Serie 2x
Code	Bezeichnung	Nm		bar	bar
			20 25	250	280
Р	SAE J744 19-4 11T	180	28	230	260
	SAE 3744 19-4 111		32	200	240
			36	180	210
			20 25	250	280
D	SAE J744 22-4 13T	320	28	230	260
	SAE 0/44 22-4 131	320	32	200	240
			36	180	210

Konische Wellen

Triebwelle		$M_{\sf max}$	Nenn- größe	p _{2 max} Serie 1x	p _{2 max} Serie 2x
Code	Тур	Nm		bar	bar
			20 25	250	280
C	1:5	200	28	230	260
C	1:5	200	32	200	240
			36	180	210

Zweiflächige Klaue

Triebv	velle	$M_{\sf max}$	Nenn- größe	$p_{2 ext{max}}$ Serie 1x	p _{2 max} Serie 2x
Code	Bezeichnung	Nm		bar	bar
			20	250	270
			22	240	240
N	7woiflächigo Klauo	95 -	25	220	220
IN	Zweiflächige Klaue	95	28	190	190
			32	170	170
			36	150	150

14

Mehrfach-Zahnradpumpen

Zahnradpumpen eignen sich für Mehrfachanordnungen, wobei die Triebwelle der 1. Pumpenstufe zu einer 2. und eventuell 3. Pumpenstufe durchgeführt wird. Die Wellenverbindung zwischen den einzelnen Stufen erfolgt standardmäßig über einen Mitnehmer bzw. über eine verzahnte Kupplung (verstärkter Durchtrieb).

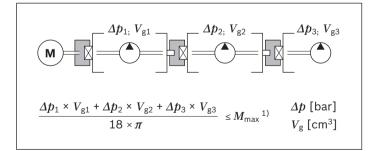
Die einzelnen Pumpenstufen sind meist hydraulisch gegeneinander abgedichtet und haben separate Sauganschlüsse. Ein gemeinsamer Sauganschluss oder getrennte Sauganschlüsse mit hydraulischer Verbindung sind auf Anfrage möglich.

Bei der Konfiguration von Mehrfachpumpen empfiehlt Bosch Rexroth die Pumpenstufe mit dem größten Verdrängungsvolumen antriebsseitig anzuordnen.

Hinweis

Grundsätzlich gelten die Kenngrößen der Einzelpumpen, jedoch sind verschiedene Einschränkungen zu beachten:

► Maximale Drehzahl:

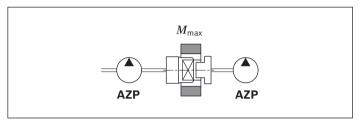

Diese wird von der größten verwendeten Pumpenstufe bestimmt.

▶ Drücke:

Diese werden durch die maximal übertragbaren Drehmomente von Triebwelle, Durchtrieb und Mitnehmer eingeschränkt.

Addition der Antriebsmomente

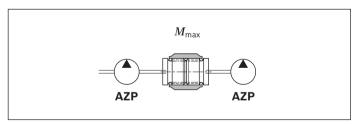
Bei Mehrfachpumpen ist zu beachten, dass sich die Antriebsmomente der nachfolgenden Stufen entsprechend folgender Formel addieren:



Hieraus ergeben sich ggf. Druckeinschränkungen in den jeweiligen Pumpenstufen.

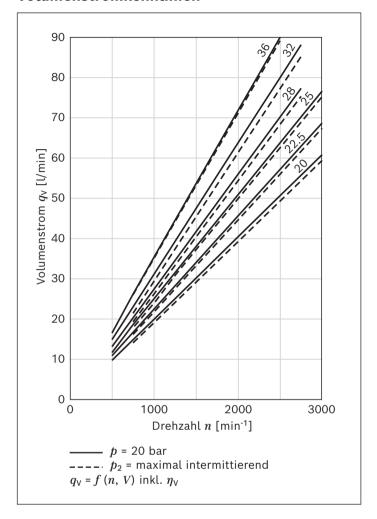
Standarddurchtrieb (Kupplungsklaue)

Bei Plattform N (AZPN, AZPT) ist der Mitnehmer für die nachfolgende Pumpenstufe belastbar bis $M_{\rm max}$ = 95 Nm. Mögliche Druckeinschränkung für nachfolgende Pumpenstufen sind zu beachten.

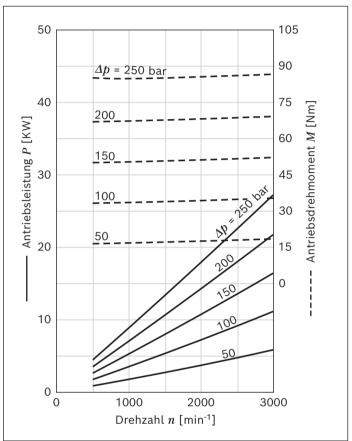

Bei nachfolgenden Pumpen einer kleineren Baureihe bestimmen diese das maximal übertragbare Moment.

Nachfolgende Pum	pe	M _{max} [Nm]
Plattform N Plattform F	AZPN	95
Plattiorm N	AZPT	95
	AZPF-1x	65
	AZPF-2x	85
Plattform F	AZPS-1x	65
	AZPS-2x	85
	AZPJ	65
Plattform B	AZPB-3x	25

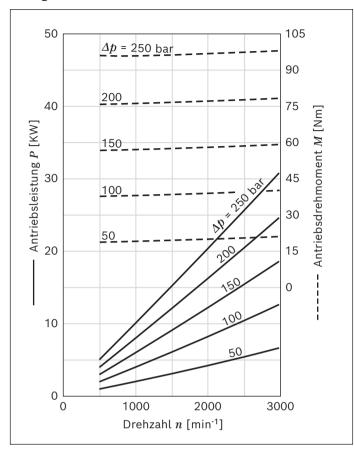
Verstärkter Durchtrieb


Für Anwendungen mit größeren Übertragungsmomenten bzw. Drehschwingungen stehen verstärkte Durchtriebe bis $M_{\rm max}$ = 160 Nm zur Verfügung. Auslegung auf Anfrage.

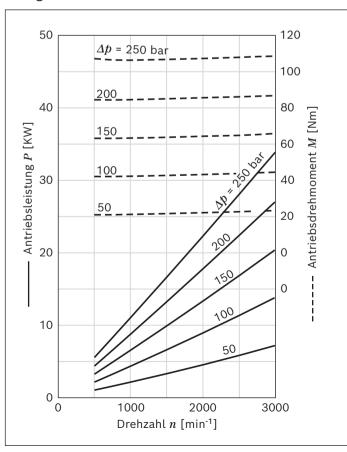
¹⁾ $M_{
m max}$: siehe Tabelle oben "Maximal übertragbare Antriebsdrehmomente"


Diagramme/Kennlinien

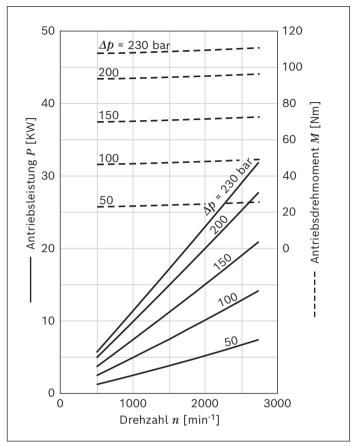
Volumenstromkennlinien

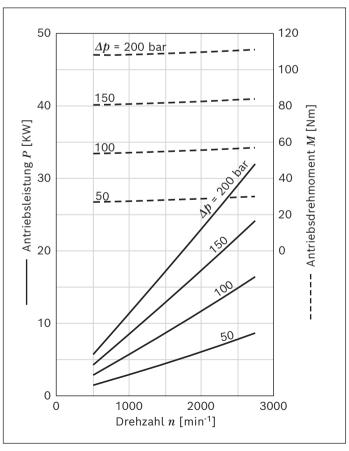

Leistungsdiagramme

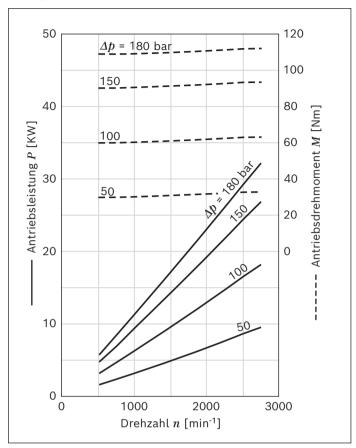
Nenngröße 20



Hinweis


► Kennlinien gemessen bei $v = 32 \text{ mm}^2/\text{s}$ und t = 50 °C.

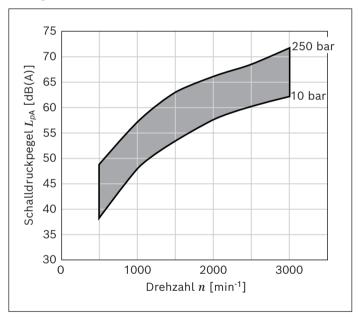


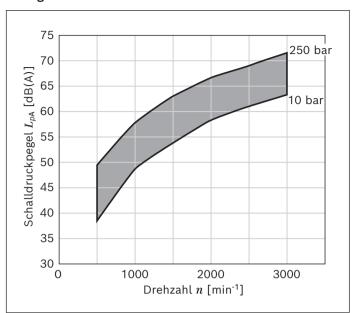

Nenngröße 25

Nenngröße 28

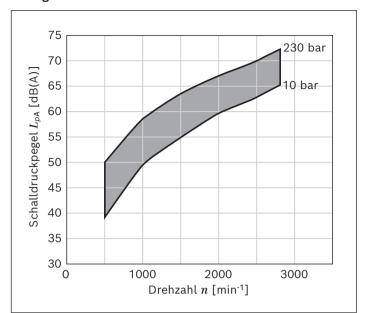
Geräuschdiagramme

Geräuschpegel in Abhängigkeit der Drehzahl, Druckbereich zwischen 10 bar und Druckwert p_2 (siehe Kapitel "Technische Daten").

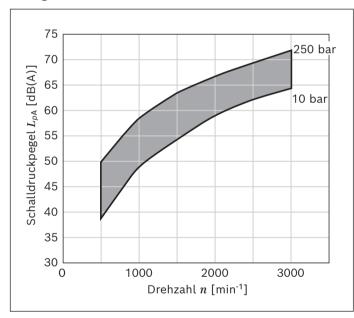

Es handelt sich um typische Kennwerte der jeweiligen Nenngröße. Sie beschreiben den von der Pumpe allein abgestrahlten Luftschall.

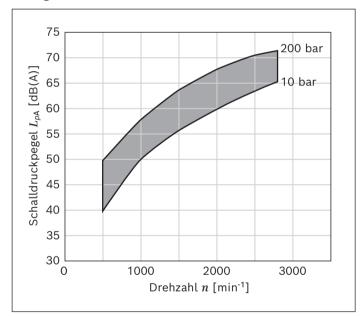

Umgebungseinflüsse (Aufstellungsort, Verrohrung, weitere Anlagenbestandteile) sind nicht berücksichtigt.

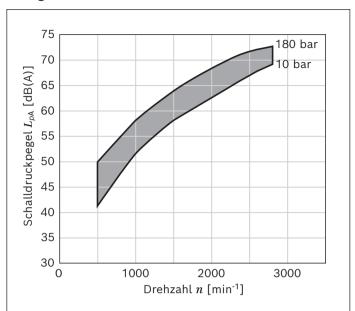
Die Werte gelten jeweils für eine einzelne Pumpe.


Hinweis

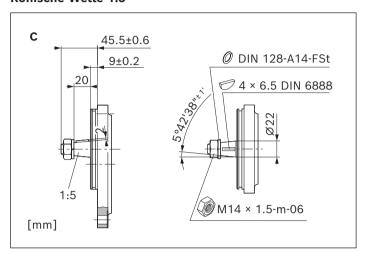
- ► Kennlinien gemessen bei $v = 32 \text{ mm}^2/\text{s}$ und t = 50 °C.
- ► Schalldruckpegel ermittelt im reflexionsarmen Messraum aus Schallmessungen nach DIN 45635, Teil 26.
- ► Abstand Messaufnehmer zu Pumpe: 1 m.

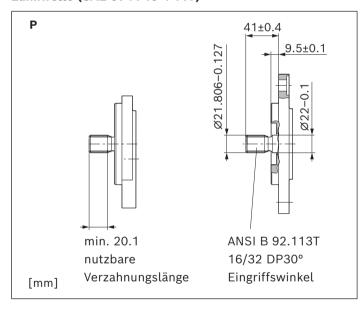




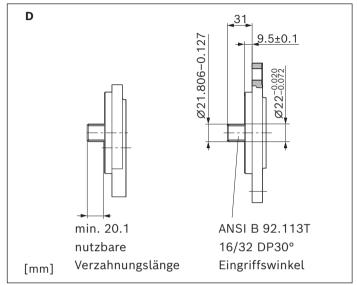

Nenngröße 28

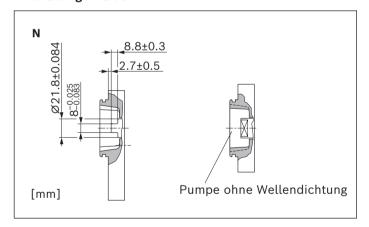
Nenngröße 25



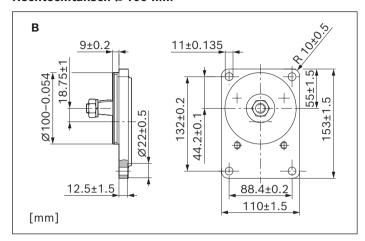

Abmessungen

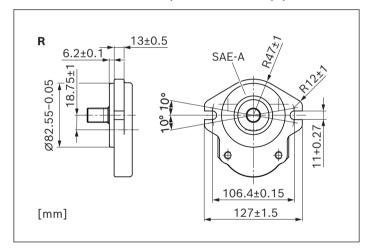
Triebwellen


Konische Welle 1:5¹⁾

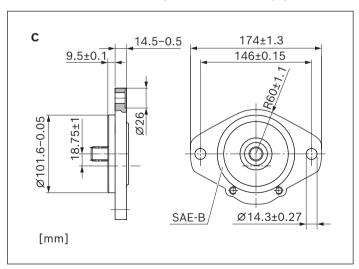

Zahnwelle (SAE J744 19-4 11T)

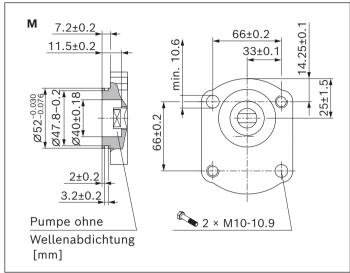
Zahnwelle (SAE J744 22-4 13T)


Zweiflächige Klaue

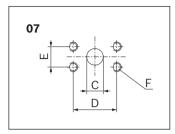

¹⁾ Die Scheibenfeder kann je nach Ausführung lose in der Nut sein

Frontdeckel

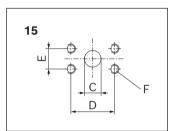

Rechteckflansch Ø100 mm


2-Lochflansch Ø82.55 mm, SAE J744 82-2 (A)

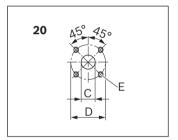
2-Lochflansch Ø101.6 mm, SAE J744 101-2 (B)



2-Lochbefestigung Ø52 mm, mit O-Ring


Leitungsanschlüsse

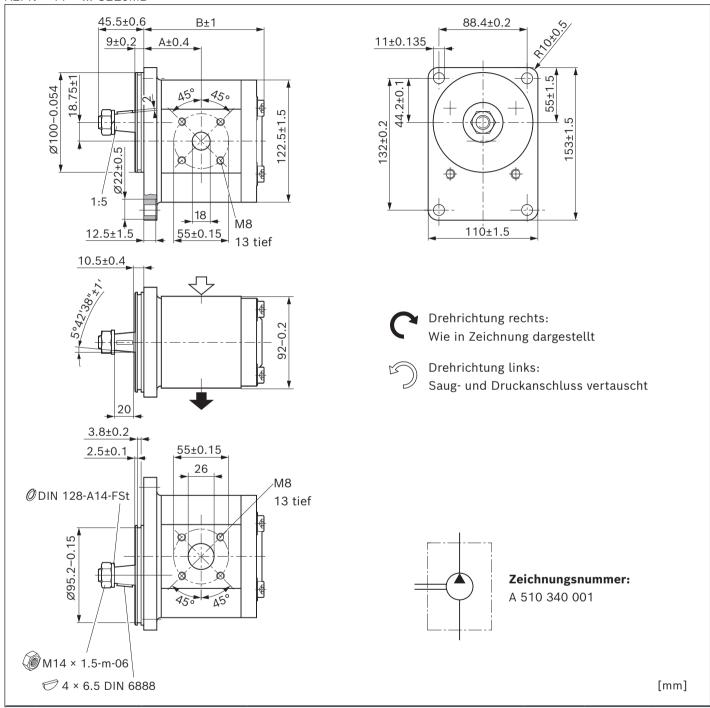
Rechteckflansch SAE Gewinde, metrisch


		Druckseite				Saugseite			
Serie	Nenngröße	С	D	E	F ¹⁾	С	D	E	F ¹⁾
		mm	mm	mm		mm	mm	mm	
1x und 2x	20	18	47.6	7.6 22.2	M10; 14 mm tief	25	47.6	22.2	- M10; 14 mm tief
	22 36		47.6			25	52.4	26.2	

Rechteckflansch SAE Gewinde, UNC

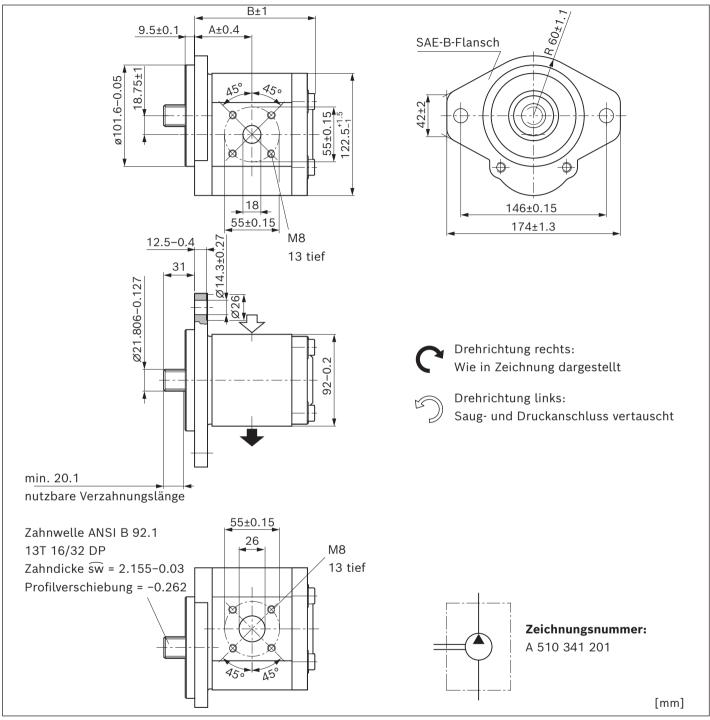
	Druckseite				Saugseite				
Serie	Nenngröße	С	D	E	F	С	D	E	F
		mm	mm	mm		mm	mm	mm	
1x und 2x	25 36	19	47.6	22.2	3/8-16 UNC-2B; 14 mm tief	25	52.4	26.2	3/8-16 UNC-2B; 14 mm tief

Quadratischer Flansch

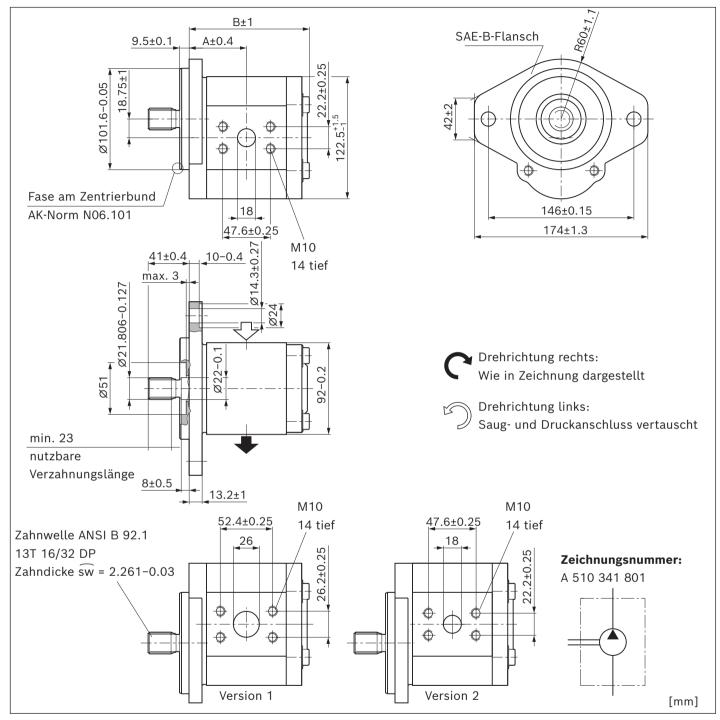

			Druckseite	Saugseite			
Serie	Nenngröße	С	D	E	С	D	E
		mm	mm		mm	mm	
1x und 2x	20 36	18	55	M8; 13 mm tief	26	55	M8; 13 mm tief

¹⁾ Bei der Serie 2x ist die Gewindetiefe der Angebotszeichnung zu entnehmen.

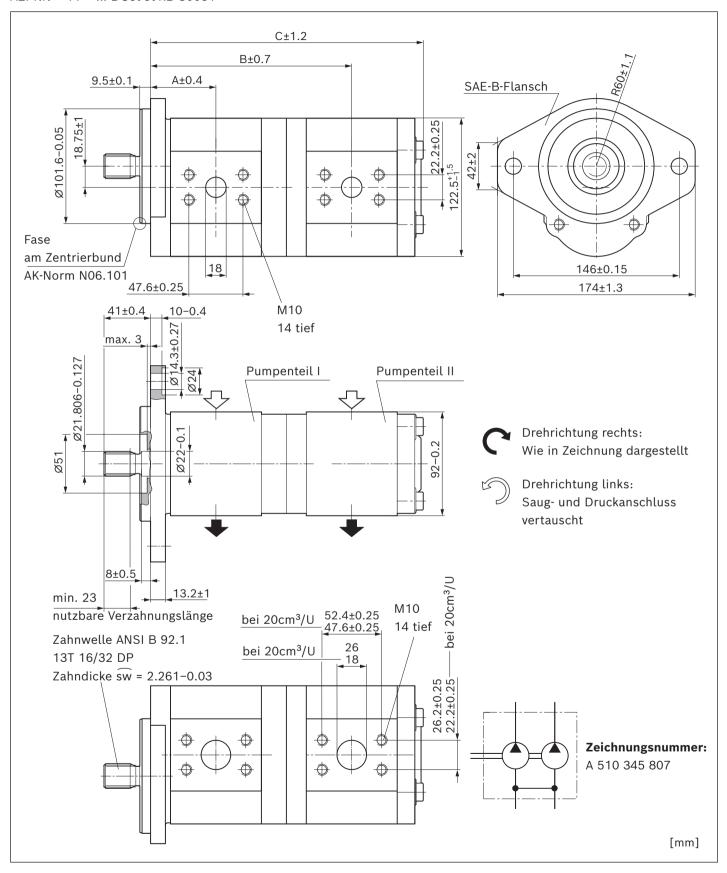
Vorzugsprogramm


Konische Welle 1:5 mit Rechteckflansch Ø100 mm

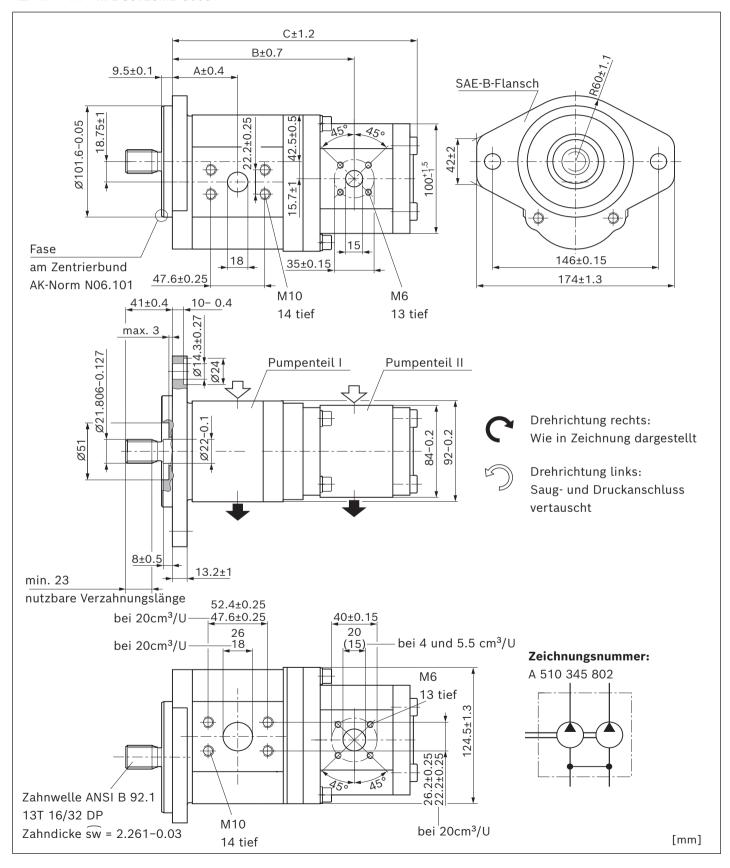
AZPN - 11 - ... CB20MB


ingen
В
mm
109.8
112.8
115.8
118.8
123.3
-

AZPN - 1X - ... DC20MB / AZPN - 1X - ... DC20KB


Materialnummer		Höchstdruck intermittierend	Drehzahl maximal	Masse	Abmessung	en
Drehrichtung		p_2	n_{max}	m	Α	В
links	rechts	bar	min ^{.1}	kg	mm	mm
		250	2500		52	110.1
		250	2500		53.5	112.6
0 510 725 377	0 510 725 057	250	2500	5.5	55	115.3
	0 510 725 094	250	2500	5.5	55	115.3
0 510 725 431	0 510 725 058	230	2500	5.7	56.5	118.3
0 510 725 363	0 510 725 155	180	2500	6	61	123.3
	Drehrichtung Links 0 510 725 377 0 510 725 431	Drehrichtung links rechts 0 510 725 377 0 510 725 057 0 510 725 094 0 510 725 058	Drehrichtung links rechts bar 250 250 0 510 725 377 0 510 725 057 250 0 510 725 094 250 0 510 725 431 0 510 725 058 230	Drehrichtung links rechts bar min¹ 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500 250 2500	Drehrichtung links rechts bar min¹¹ kg 250 2500 250 2500 250 2500 0 510 725 377 0 510 725 057 250 2500 5.5 0 510 725 094 250 2500 5.5 0 510 725 431 0 510 725 058 230 2500 5.7	Drehrichtung links rechts bar min ⁻¹ kg mm A 250 2500 52 52 250 2500 53.5 0 510 725 377 0 510 725 057 250 2500 5.5 55 0 510 725 094 250 2500 5.5 55 0 510 725 431 0 510 725 058 230 2500 5.7 56.5

AZPN - 11 - ... **DC07**KB S0081


	Materialnumme	r	Höchstdruck intermittierend	Drehzahl maximal	Masse	Abmessung	Version	
NG	Drehrichtung		p_2	n_{max}	m	Α	В	version
	links	rechts	bar	min ⁻¹	kg	mm	mm	
20	0 510 625 380	0 510 625 073	250	3000	5.3	52	109.8	2
22	0 510 725 404	0 510 725 103	250	3000	5.4	52	112.8	
25	0 510 725 405	0 510 725 104	250	3000	5.5	55	115.8	
28	0 510 725 406	0 510 725 105	230	2800	5.7	56.5	118.8	_ 1
32	0 510 725 407	0 510 725 106	200	2800	5.8	59	123.3	
36			180	2600		61	127.8	

AZPNN - 11 - ... DC0707KB S0081

NG		Materialnumm	er	Höchstdruck i	ntermittierend	Drehzahl maximal	Masse	Abmessu		
В	P _{II}	Drehrichtung		p_{21}	$p_{2 \ \text{II}}$	n_{max}		Α	В	С
Pı		links	rechts	bar	bar	min ⁻¹	kg	mm	mm	mm
20	20	0 510 665 461	0 510 665 149	250	250	2000	9.9	52	160.7	217.9
22	20	0 510 765 369		250	250	2000	10	53.5	163.6	222.7
22	22	0 510 765 380	0 510 765 086	250	230	3000	10.1	53.5	165.2	225.7
25	20		0 510 765 067	250	250	2000	10.1	55	166.6	225.7
25	22		0 510 765 068	250	230	3000	10.2	55	168.2	228.7
25	25	0 510 766 315	0 510 765 069	250	200	3000	10.3	55	169.7	229.9
32	32	0 510 765 370	0 510 768 034	200	160	2500	10.9	29	181.2	244.9

AZPNF - 1X - ... **DC0720**KB S0081 AZPNF - 1X - ... **DC0720**MB S0081

NG		Materialnumme	er	Höchstdruck i	ntermittierend	Drehzahl maximal	Masse	Abmessu		
_		Drehrichtung		$p_{2 \parallel}$ $p_{2 \parallel}$		n_{max}	m	Α	В	С
Pı	P _{II}	links	rechts	bar	bar	min ^{.1}	kg	mm	mm	mm
20	4		0 510 665 181	250	280	3000		52	141.5	184.2
22	8	0 510 765 387	0 510 765 078	250	250 280		8.4	53.5	147.9	193.8
22	11	0 510 765 381	0 510 765 062	250	280	3000	8.5	53.5	151.7	200.6
25	4	0 510 766 316		250	280	3000		55	147.6	190.2
25	11	0 510 765 377	0 510 765 079	250	280	3000	8.6	55	154.7	203.6
25	14		0 510 766 014	250	250	3000	8.7	55	155.2	206.8
25	16		0 510 765 080	250	230	3000	8.8	55	155.2	210.2
28	11		0 510 765 092	230	280	2800	8.7	56.5	157.7	206.6
28	16	0 510 765 384	0 510 765 063	230	230	2800	8.9	56.5	158.2	213.2
28	19	0 510 766 314	0 510 767 058	200	200	2800	9	56.5	158.2	219.8
28	22		0 510 767 045	230	200	2100	9.2	56.5	165.8	223.6
28	22	0 510 767 332		230	150	2100	9.3	56.5	165.8	223.6
32	8		0 510 765 064	200	280	2500	8.8	59	158.4	204.3
32	11	0 510 768 320	0 510 765 065	200	280	2500	8.9	59	162.2	211.1
32	14	0 510 765 378		200	250	2500	9	59	162.7	216.1
32	16		0 510 765 066	200	230	2500	9.1	59	162.7	217.7
32	22	0 510 768 318		200	150	2100	·	59	170.3	229.9

Projektierungshinweise

Technische Daten

Alle genannten technischen Daten sind abhängig von Fertigungstoleranzen und gelten bei bestimmten Randbedingungen.

Beachten Sie, dass deshalb Streuungen möglich sind und bei bestimmten Randbedingungen (z. B. Viskosität) sich auch die technischen Daten ändern können.

Die von Bosch Rexroth gelieferten Pumpen sind auf Funktion und Leistung geprüft.

Die Pumpe darf nur mit den zulässigen Daten betrieben werden (siehe Kapitel "Technische Daten").

Kennlinien

Beachten Sie bei der Auslegung der Zahnradpumpe die maximal möglichen Einsatzdaten anhand der dargestellten Kennlinien.

Anwendungshinweis

Außenzahnradeinheiten sind nicht zugelassen in Straßenfahrzeugen für sicherheitsrelevante Funktionen, sowie Funktionen im Antriebsstrang, für Lenkung, Bremsen und Niveauregulierung.

Klassifiziert als Straßenfahrzeuge sind Fahrzeuge wie Motorräder, Personenkraftwagen, Lastkraftwagen, Lieferwagen, Lastwagen, Busse und Anhänger. Als Referenz dienen die europäischen Fahrzeugklassen L (Motorräder), M (Personenkraftwagen), N (Fahrzeuge zur Güterbeförderung, wie Lastkraftwagen und Lieferwagen) und O (Anhänger und Sattelanhänger).

Filterung der Druckflüssigkeit

Da der größte Teil der vorzeitigen Ausfälle von Zahnradpumpen auf verschmutzte Druckflüssigkeit zurückzuführen ist, muss durch die Filterung mindestens die Reinheitsklasse 20/18/15 nach ISO 4406 eingehalten werden. Dadurch kann die Verschmutzung auf ein zulässiges Maß bezüglich Größe und Konzentration der enthaltenen Schmutzteilchen reduziert werden.

Bosch Rexroth empfiehlt grundsätzlich Vollstromfilterung. Die Grundverschmutzung der eingefüllten Druckflüssigkeit darf Klasse 20/18/15 nach ISO 4406 nicht überschreiten. Erfahrungen haben gezeigt, dass bereits neue Flüssigkeiten oft über diesem Wert liegen. In solchen Fällen ist eine Füllvorrichtung mit speziellem Filter zu verwenden. Bosch Rexroth übernimmt bei Schmutzverschleiß keine Gewährleistung.

Bei Hydrauliksystemen und Geräten mit funktionsbedingter, kritischer Fehlerauswirkung, wie z. B. Lenkungsventile, Bremsventile, muss die gewählte Filterung auf die Empfindlichkeit dieser Geräte abgestimmt sein.

Hinweis

▶ Beim Einsatz als Hilfslenkpumpe ist vom Fahrzeughersteller sicherzustellen, dass auch bei einem Ausfall der Hilfslenkpumpe eine sichere Funktion der Lenkanlage gemäß ECE R-79 gewährleistet ist.

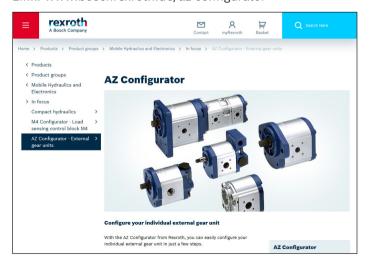
Weitere Informationen

Die Einbauzeichnungen und Maße entsprechen dem Stand zum Zeitpunkt der Veröffentlichung. Änderungen vorbehalten.

Weitere Informationen und Hinweise zur Projektierung sind der "Allgemeinen Betriebsanleitung für Außenzahnradeinheiten" zu entnehmen (07012-B, Kapitel 5.5).

Informationen

AZ Configurator


Mit unserem praktischen Produktselektor finden Sie im Handumdrehen immer die richtige Lösung für Ihre Anwendungen, ganz gleich ob SILENCE PLUS oder eine andere Außenzahnradeinheit.

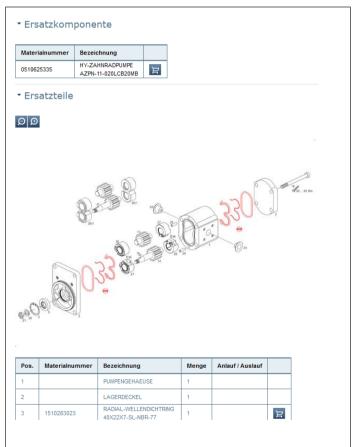
Über eine Auswahl von Merkmalen führt Sie der Selektor gezielt zu allen bestellbaren Produkten. Durch das Anklicken der Bestellnummer können Sie folgende Informationen zum Produkt aufrufen und herunterladen: Datenblatt, Maßblatt, Betriebsanleitung, Betriebsbedingungen und Anziehdrehmomente.

Sie können Ihre Auswahl direkt über unseren eShop bestellen und dabei von einem zusätzlichen Rabatt von 2% profitieren. Und falls es mal schnell gehen muss, nutzen Sie einfach unsere Schnelllieferungs- und Vorzugsprogramme (GoTo). Dann wird die Ware innerhalb von 10 Werktagen versendet.

Sie haben außerdem die Möglichkeit, mit unserem AZ Configurator einfach und bequem Ihre individuelle Außenzahnradeinheit zu konfigurieren. Durch die Menüführung werden alle erforderlichen Daten abgefragt, welche Sie zur Projektierung von Außenzahnradeinheiten benötigen. Bei einer bereits existierenden Konfiguration erhalten Sie als Ergebnis die Bestellnummer, den Typenschlüssel sowie weiterführende Informationen. Führt Ihre Konfiguration nicht zu einem bestellbaren Produkt, bieten Ihnen unsere Online-Tools die Möglichkeit, eine Projektanfrage direkt an Bosch Rexroth zu senden. Wir setzen uns dann mit Ihnen in Verbindung.

Link: www.boschrexroth.de/az-configurator

Ersatzteile

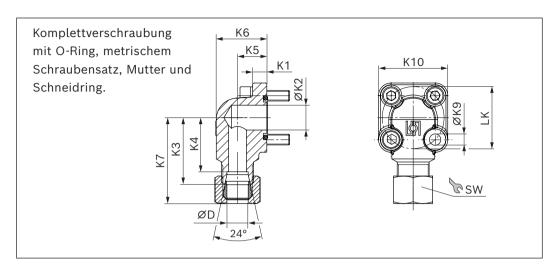

Ersatzteile finden Sie im Internet unter www.boschrexroth.com/eshop Wählen Sie "Ersatzteile und Zubehör" und geben die Materialnummer der Außenzahneinheiten in das Suchfeld ein.

Beispiel:

Materialnummer: 0 510 625 335

Typbezeichnung: AZPN-11-020LCB20MB

Unter "Ersatzteile" sind alle verfügbaren Ersatzteile aufgeführt und können über den Warenkorb bestellt werden.



Weitere Dokumentationen

▶ Umfangreiche Hinweise und Anregungen finden Sie im Hydraulik-Trainer Band 3: "Projektierung und Konstruktion von Hydroanlagen", Bestellnummer R900018538.

Zubehör

90°-Winkel-Flansch, für quadratischen Flansch 20

LK	D	Reihe ¹⁾ Materialnummer		p_{max}	K1	K2	КЗ	K4	K5	К6	K7	К9	K10	sw	Schra	uben	O-Ring	Masse
mm	mm			bar	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	2 ×	2 ×	NBR	kg
55	20	S	1 515 702 004	250	13	18.2	45	34.5	24	38	57	8.4	58	36	M8 × 25	M8 × 50	32 × 2.5	0.62
55	30	S	1 545 719 006	250	12	26.5	49	38.5	32	51	63.5	8.4	58	50	M8 × 25	M8 × 50	32 × 2.5	0.63
55	35	L	1 515 702 005	100	12	26.5	49	38.5	32	52	61	8.4	58	50	M8 × 25	M8 × 60	32 × 2.5	0.77
55	42	L	1 515 702 019	100	12	26.5	49	38	40	64	61.5	8.4	58	60	M8 × 25	M8 × 70	32 × 2.5	1.04

¹⁾ Siehe DIN EN ISO 8434-1

Hinweis

▶ Die zulässigen Anziehdrehmomente sind der "Allgemeinen Betriebsanleitung für Außenzahnradeinheiten" (07012-B) zu entnehmen.

Bosch Rexroth AG

Robert-Bosch-Straße 2 71701 Schwieberdingen Germany brm-az.info@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2006. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen. Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.