

Außenzahnradpumpe High Performance AZPN

- ▶ Plattform N
- ► Konstantes Verdrängungsvolumen
- ▶ Nenngröße 20 ... 36
- ▶ Dauerdruck bis 250 bar
- ▶ Intermittierender Druck bis 280 bar

Merkmale

- ► Gleichbleibend hohe Qualität aufgrund Großserienproduktion
- ► Hohe Lebensdauer
- ► Gleitlager für hohe Belastungen
- ► Antriebswellen entsprechend ISO oder SAE und kundenspezifische Lösungen
- ► Leitungsanschlüsse: Anschlussflansche oder Einschraubgewinde
- ► Kombinationen von mehreren Pumpen möglich

Inhalt	
Produktbeschreibung	2
Typenschlüssel	4
Technische Daten	8
Diagramme/Kennlinien	15
Abmessungen	20
Projektierungshinweise	30
Informationen	31
Zubehör	32

Produktbeschreibung

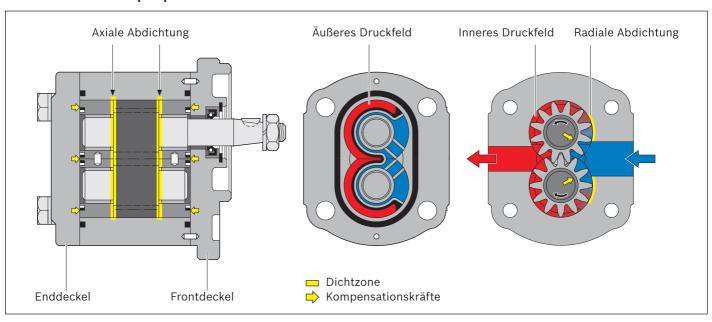
Allgemein

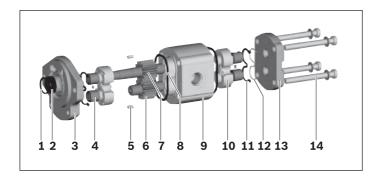
Die zentrale Aufgabe von Außenzahnradpumpen besteht in der Umwandlung von mechanischer Energie (Drehmoment und Drehzahl) in hydraulische Energie (Volumenstrom und Druck). Zur Reduzierung von Wärmeverlusten besitzen Rexroth Außenzahnradeinheiten sehr hohe Wirkungsgrade. Diese werden durch eine druckabhängige Spaltabdichtung und hochpräzise Fertigungstechnik realisiert.

Rexroth-Außenzahnradpumpen gibt es in vier Baugrößen: Plattform B, F, N und G. Dabei werden innerhalb einer Plattform die unterschiedlichen Nenngrößen durch unterschiedliche Zahnradbreiten realisiert. Die Pumpen stehen in den Ausführungen Standard, High-Performance, SILENCE und SILENCE PLUS zur Verfügung. Weitere Ausführungsvarianten entstehen durch verschiedene Flansche, Wellen, Ventilaufbauten und Mehrfach-Pumpenkombinationen.

Förderprinzip

Die bei der Drehbewegung aus dem Zahneingriff auseinander laufenden Zähne, lassen die Zahnkammern frei werden. Der dadurch entstehende Unterdruck, sowie der atmosphärische Druck auf dem Druckflüssigkeitsspiegel im Behälter bewirken, dass der Pumpe aus dem Behälter Druckflüssigkeit zuläuft. Diese Druckflüssigkeit füllt die Zahnkammern und wird in diesen in Pfeilrichtung (siehe Schnittzeichnung) am Gehäuse entlang von der Saug- zur Druckseite befördert. Hier greifen die Zähne wieder ineinander, verdrängen die Druckflüssigkeit aus den Zahnkammern und verhindern ein Rückströmen zum Saugraum.


Konstruktive Ausführung


Die Außenzahnradpumpe besteht im Wesentlichen aus dem Zahnradpaar, das in Lagerbuchsen gelagert ist, sowie dem Gehäuse mit einem Frontdeckel und einem Enddeckel.

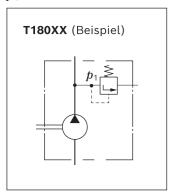
Durch den Frontdeckel wird die, in der Regel mit einem Wellendichtring abgedichtete, Triebwelle durchgeführt. Die Lagerkräfte werden von Gleitlagern aufgenommen. Diese sind für hohe Drücke ausgelegt und haben ausgezeichnete Notlaufeigenschaften – speziell bei niedrigen Drehzahlen.

Die Zahnräder haben 12 Zähne. Das hält die Förderstrompulsation und Geräuschemission niedrig. Die Abdichtung der Druckräume erfolgt mit betriebsdruckabhängigen Kräften. Daraus ergibt sich ein optimaler Wirkungsgrad. Der in den Zahnkammern entstehende Betriebsdruck wird in speziell ausgelegten Druckfeldern auf die Außenseite der Lagerbuchsen geführt, sodass diese dichtend gegen die Zahnräder gedrückt werden. Die beaufschlagten Druckfelder werden dabei durch spezielle Dichtungen begrenzt. Die Abdichtung am Umfang der Zahnräder zum Gehäuse hin wird durch kleinste Spalte sichergestellt, die sich druckabhängig zwischen Zahnrädern und Gehäuse einstellen.

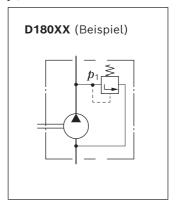
Aufbau Außenzahnradpumpe

- **1** Sicherungsring
- **2** Wellendichtring
- 3 Frontdeckel
- 4 Gleitlager
- **5** Zentrierstift
- 6 Zahnrad
- **7** Triebwelle

- 8 Gehäusedichtring
- 9 Pumpengehäuse
- 10 Lagerbuchse
- 11 Axialfelddichtung
- 12 Stützelement
- 13 Enddeckel
- 14 Torxschrauben


Zahnradpumpen mit integrierten Ventilen

Zur Verringerung des Verrohrungsaufwandes kann ein Stromregelventil oder ein Druckbegrenzungsventil im Deckel der Zahnradpumpe integriert werden. Solche Lösungen finden z. B. zur Druckölversorgung von Servolenkungen Verwendung. Die Pumpe liefert unabhängig von der Drehzahl einen konstanten Volumenstrom bzw. einen maximalen Druck. Der Reststrom kann intern an den Sauganschluss oder extern weiteren Verbrauchern zugeführt werden.


Druckbegrenzungsventil, Druckabführung extern

 p_1 = 5 bis 250 bar

Druckbegrenzungsventil, Druckabführung in Saugleitung

 p_1 = 5 bis 250 bar

Typenschlüssel

Typenschlüssel Einzelpumpe

01	02		03	04		05	06	07	08	09	10	11	12	13	3		14
ΑZI	P N	_			-											-	
	nzahnradeir																
01	Außenzahn	radpum	pe											-			AZP
Baure																	
02	High Perfor	mance,	Plattfor	rm N													N
Serie																	
03	Gehausebr																1
	Gehausebro	eite 110) mm														2
/ersi	1																
04	Phosphatie			- 4)													1
	Korrosions	geschüt	zt, verst	iftet ¹⁾													2
	größe (NG)												,				1
05	Geometrisc	ches Ver	drängur	ngsvolume	en $V_{ m g}$ [c	m³], sieł	ne technis	sche Da	ten		02	0 022	025	028	032	036	J
Dreh	richtung																
06	Bei Blick au	uf Trieb	welle				rechts										R
							links										L
Trieb	welle						Passend	ler Fron	tdeckel								
07	Konische W	/elle	1:	5			В										С
	Zweiflächig	, Klaue					М										N
	Zahnwelle			E J744 22			C										D
			SAI	E J744 19	9-4 11T		С										Р
Front	deckel																
80	Rechteckfla			00 mm													В
	2-Lochflans	sch		2.2 mm			SAE J74										R
				01.6 mm			SAE J74		В								C
	2-Lochbefe		<u> </u>	2 mm			mit O-Ri	ng									M
	ngsanschlus										02	0 022	025	028	032	036	
09	Rechteckfla	ansch S.	AE Gewi	inde, met	risch		;				•	•	•	•	•	•	07
	Rechteckfla	ansch S	AE Gewi	nde, UNC			÷÷:				-	_	•	•	•	•	15
	Quadratisc	her Flar	nsch				<u> </u>				•	•	•	•	•	•	20
Dicht	ungswerkst	off															
<mark>10</mark>	NBR (Nitril	-Kautsc	huk), We	ellendicht	ring in F	-KM (Flu	or-Kauts	chuk)									К
	NBR (Nitril																M
	FKM (Fluor	-Kautsc	huk)														P

¹⁾ Korrosionsgeschützte Ausführung, Details siehe "Technische Daten"

01	02		03	04		05	06	07	80	09	10	11	12	13		14	
AZP	N	-			-										-		

Enddeckel

11	Ohne Ventil (Standard)			В
	Mit Druckbegrenzungsventil	Druckabführung	extern	Т
			intern	D

Ventileinstellung Druckbegrenzungsventil (Angabe nur erforderlich bei Enddeckel mit Druckbegrenzungsventil)

12	Ohne Druckbegrenzungsventil	XXX]
	Öffnungsdruck in bar, 3-stellig, z. B. 180 bar	180	1

Ventileinstellung Stromregelventil (Angabe nur erforderlich bei Enddeckel mit Stromregelventil)

13	Ohne Stromregelventil	XX	
	Volumenstrom in l/min, 2-stellig, z. B. 9 l/min	09]

Sonderausführung

14

• = Lieferbar - = Nicht lieferbar

Hinweis

- ► Es sind nicht alle Varianten nach dem Typenschlüssel möglich.
- ▶ Bitte wählen Sie die gewünschte Pumpe anhand der Auswahltabellen (Vorzugstypen) oder nach Rücksprache mit Bosch Rexroth aus.
- ► Auf Anfrage sind Sonderoptionen möglich

¹⁾ Für weitere Informationen zu Sonderausführungen. bitte Rücksprache.

Technische Daten

Wertetabelle

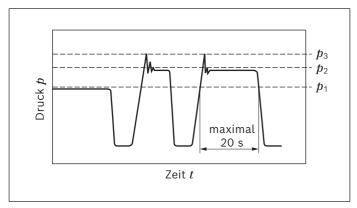
Nenngröße			20	22	25	28	32	36	
Serie				Serie 1x					
Verdrängungsvolumen	geometrisch, pro Umdrehung	V_{g}	cm³	20	22.5	25	28	32	36
Druck am Sauganschluss S ¹⁾ absolut $p_{\rm e}$ bar			bar	0.7 3					
Dauerdruck maximal		p_1	bar	230	230	230	210	180	160
Intermittierender Druck maximal p_2 bar			bar	250	250	250	230	200	180
Druckspitze maximal		p_3	bar	270	270	270	250	220	200
	<i>p</i> < 100 bar	n_{min}	min ⁻¹	500	500	500	500	500	500
Drehzahl minimal bei	$v = 12 \text{ mm}^2/\text{s} p = 100 \dots 180 \text{ bar}$	n_{min}	min ⁻¹	600	600	600	600	600	600
Drenzant minimat bei	$p = 180 \text{ bar } p_2$	n_{min}	min ⁻¹	800	800	800	800	800	800
	v = 25 mm 2 /s bei p_2	n_{min}	min ⁻¹	500	500	500	500	500	500
Drehzahl maximal	bei p_2	n_{max}	min ⁻¹	3000	3000	3000	2800	2800	2800

Nenngröße					20	22	25	28	32	36
Serie							Seri	e 2x		
Verdrängungsvolumer	geometrisch,	pro Umdrehung	V_{g}	cm³	20	22.5	25	28	32	36
Druck am Sauganschl	uss S ¹⁾	absolut	p_{e}	bar			0.7	3		
Dauerdruck maximal			p_1	bar	250	250	250	230	210	180
Intermittierender Dru	ck maximal		p_2	bar	280	280	280	260	240	210
Druckspitze maximal			p_3	bar	300	300	300	280	260	230
		<i>p</i> < 100 bar	n_{min}	min ⁻¹	500	500	500	500	500	500
Drehzahl minimal bei	$v = 12 \text{ mm}^2/\text{s}$	p = 100 180 bar	n_{min}	min ⁻¹	600	600	600	600	600	600
Drenzani minimal bei		p = 180 bar p ₂	n_{min}	min ⁻¹	800	800	800	800	800	800
	ν = 25 mm ² /s	bei p_2	n_{min}	min ⁻¹	500	500	500	500	500	500
Drehzahl maximal		bei p_2	$n_{\sf max}$	min ⁻¹	3000	3000	3000	2800	2800	2800

Allgemeine technische Daten

Masse	m	kg	Siehe Kapitel "Abmessungen"					
Einbaulage			Keine Einschränkungen					
Befestigungsart			Flansch- oder Durchschraubbefestigung mit Einpass					
Leitungsanschlüsse			Siehe Kapitel "Abmessungen"					
Drehrichtung, bei Blick auf Triebwelle			Rechts bzw. links; die Pumpe darf nur in der angegebenen Richtung drehen					
Triebwellenbelastung			Axiale und radiale Kräfte nur nach Rücksprache					
l los es hum esta os os saturdo a e	siah t	9.0	-30 +80 mit NBR-Dichtungen (NBR = Nitril-Kautschuk)					
Umgebungstemperaturbere	eich t	°C	-20 +110 mit FKM-Dichtungen (FKM = Fluor-Kautschuk)					

Korrosionsschutz


Version 1 (phosphatiert): Einheit mit geringem Korrosionsschutz	Oberfläche dient als Schutz gegen Flugrost beim Transport bzw. als Grundierung zum Lackieren				
Version 2 (verzinkt, passiviert): Einheit mit Korrosionsschutz	Korrosions- und Rostgrad in Anlehnung an DIN EN ISO 9227	Testdauer 96 h: kein Rotrost			

Hinweis

- ► Beachten Sie die geltenden Sicherheitsanforderungen der Gesamtanlage.
- ► Bei Anwendungen mit häufigen Lastwechseln bitte Rücksprache.

¹⁾ Bei Tandempumpen darf die saugseitige Druckdifferenz zwischen den einzelnen Pumpenstufen maximal 0.5 bar betragen.

Druckdefinition

 p_1 : Dauerdruck maximal

 p_2 : Intermittierender Druck maximal

 p_3 : Druckspitze maximal

Ermittlung der Kenngrößen

Volumenstrom

$$q_{\text{v}} = \frac{V_{\text{g}} \times n \times \eta_{\text{v}}}{1000}$$

[l/min]

Drehmoment

$$M = \frac{V_{\rm g} \times \Delta p}{20 \times \pi \times \eta_{\rm hm}}$$

[Nm]

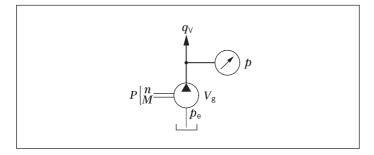
Leistung

$$P = \frac{2\pi \times M \times n}{60000} = \frac{q_{\text{V}} \times \Delta p}{600 \times \eta_{\text{t}}}$$

[kW]

Legende

 V_{g} Verdrängungsvolumen pro Umdrehung [cm³]


 Δp Differenzdruck [bar]

n Drehzahl [min⁻¹]

 $\eta_{ extsf{v}}$ Volumetrischer Wirkungsgrad

 $\eta_{
m hm}$ Hydraulisch-mechanischer Wirkungsgrad

 $\eta_{\rm t}$ Gesamtwirkungsgrad ($\eta_{\rm t}$ = $\eta_{\rm v}$ • $\eta_{\rm hm}$)

Hinweis

► Diagramme zur überschlägigen Berechnung finden Sie im Kapitel "Diagramme/Kennlinien".

Druckflüssigkeit

Die Außenzahnradeinheit ist für den Betrieb mit Mineralöl HLP nach DIN 51524, 1-3 konzipiert. Bei höherer Belastung empfiehlt Bosch Rexroth jedoch mindestens HLP nach DIN 51524, Teil 2.

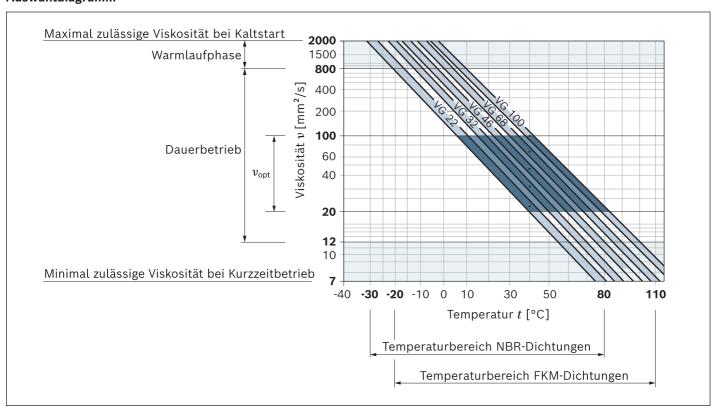
Anwendungshinweise und Anwendungsanforderungen zur Auswahl der Hydraulikflüssigkeit, Verhalten im Betrieb sowie Entsorgung und Umweltschutz entnehmen Sie vor der Projektierung folgendem Datenblatt:

▶ 90220: Hydraulikflüssigkeiten auf Basis von Mineralölen und artverwandten Kohlenwasserstoffen

Auswahl der Druckflüssigkeit

Bosch Rexroth bewertet Hydraulikflüssigkeiten über das Fluid Rating gemäß Datenblatt 90235.

Im Fluid Rating positiv bewertete Hydraulikflüssigkeiten finden Sie im folgenden Datenblatt:

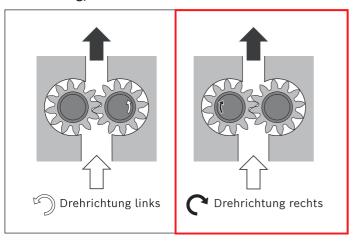

 ▶ 90245: Bosch Rexroth Fluid Rating List für Rexroth-Hydraulikkomponenten (Pumpen und Motoren)
 Die Auswahl der Druckflüssigkeit soll so erfolgen, dass im Betriebstemperaturbereich die Betriebsviskosität im optimalen Bereich liegt (vopt siehe Auswahldiagramm).

Andere Hydraulikflüssigkeiten auf Anfrage.

Viskosität und Temperatur der Druckflüssigkeiten

Viskositätsbereich	
Im Dauerbetrieb zulässig	ν = 12 800 mm²/s
Im Dauerbetrieb empfohlen	ν _{opt} = 20 100 mm²/s
Bei Kaltstart zulässig	$v_{\text{max}} \le 2000 \text{ mm}^2/\text{s}$
Temperaturbereich	
Mit NBR-Dichtungen (NBR = Nitril-Kautschuk)	t = -30 °C +80 °C
Mit FKM-Dichtungen (FKM = Fluor-Kautschuk)	t = -20 °C +110 °C

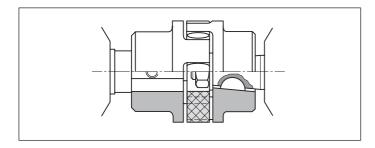
Auswahldiagramm



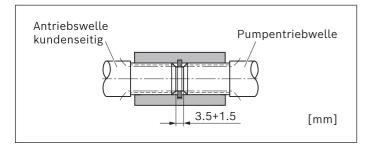
Die Hinweise zur Filterung der Druckflüssigkeit sind zu beachten (siehe Kapitel Projektierungshinweise).

Drehrichtung

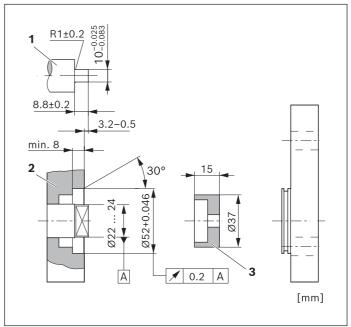
Die Maßzeichnungen im Kapitel "Abmessungen" zeigen Pumpen für Drehrichtung rechts. Für Drehrichtung links ändert sich die Lage der Triebwelle bzw. die Lage von Saug- und Druckanschluss.


Drehrichtung, bei Blick auf Triebwelle

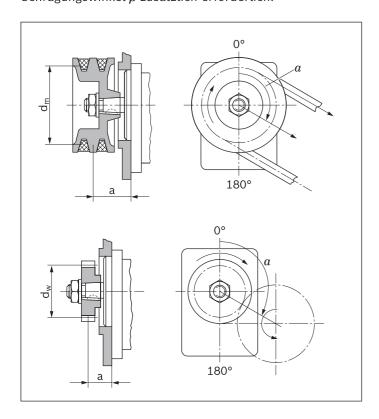
Antriebe


1. Elastische Kupplungen

- Die Kupplung darf keine radialen und axialen Kräfte auf die Pumpe übertragen.
- Die Rundlaufabweichungen von der Welle zum Einpass dürfen maximal 0.2 mm betragen.
- Zulässige Wellenverlagerungen siehe Montagehinweise der Kupplungshersteller.


2. Kupplungshülse

- Anzuwenden bei Zahnwellenprofil nach DIN und SAE
- Achtung: Keine radialen und axialen Kräfte auf Pumpenwelle und Kupplungshülse zulässig. Kupplungshülse muss axial frei beweglich sein.
- Abstand Pumpentriebwelle kundenseitige Antriebswelle 3.5+1.5 mm.
- Einbauraum für Sicherungsring beachten.
- Schmierung durch Ölbad oder Ölnebel erforderlich


3. Kupplungsklaue

- Für direkten Anbau der Pumpe an Elektro- oder Verbrennungsmotor, Getriebe usw.
- Pumpentriebwelle mit spezieller Kupplungsklaue und Mitnehmer (3) (Lieferumfang siehe Angebotszeichnung)
- Keine Wellenabdichtung
- Einbau antriebsseitig und Abdichtung entsprechend folgenden Empfehlungen und Abmessungen
- Kundenseitige Antriebswelle (1)
 - Einsatzstahl DIN EN 10084, z. B. 20MnCrS5 einsatzgehärtet 1.0 mm tief; HRA 83±2
 - Lauffläche Dichtring drallfrei geschliffen R_t ≤ 4 μm
- Kundenseitiger Radialwellendichtring (2)
 - Mit Gummiummantelung vorsehen (siehe DIN 3760, Form AS oder doppellippigen Ring)
 - Einbaukanten mit 15°-Schräge vorsehen bzw. Wellendichtring mit Schutzhülse montieren

4. Keilriemen und gerades Zahnrad oder schrägverzahnte Zahnradantriebe ohne Vorsatzlager

Bei Antrieb durch Keilriemen bzw. Zahnrad bitten wir um Rückfrage mit Angabe der Einsatzbedingungen und der Anbauverhältnisse (Maß a, d_m , d_w und Winkel α). Bei schrägverzahnten Zahnradantrieben ist die Angabe des Schrägungswinkel β zusätzlich erforderlich.

Maximal übertragbare Antriebsdrehmomente

Zahnwellen

Triebwelle		$M_{\sf max}$	Nenn- größe	p _{2 max} Serie 1x	p _{2 max} Serie 2x	
Code	Bezeichnung	Nm		bar	bar	
Р	SAE J744 19-4 11T		20 25	250	280	
		180	28	230	260	
		SAE 0744 19-4 111	100	32	200	240
					36	180
D			20 25	250	280	
		SAF J744 22-4 13T	320	28	230	260
	SAE J744 22-4 131	320	32	200	240	
			·	36	180	210

Konische Wellen

Triebwelle		$M_{\sf max}$	Nenn- größe	p _{2 max} Serie 1x	p _{2 max} Serie 2x
Code	Тур	Nm		bar	bar
С			20 25	250	280
	1 : 5	200	28	230	260
	1:5	200	32	200	Serie 2x bar 280
			36	180	210

Zweiflächige Klaue

Triebwelle		$M_{\sf max}$	Nenn- größe	$p_{ m 2\ max}$ Serie 1x	p _{2 max} Serie 2x	
Code	Bezeichnung	Nm		bar	bar	
N			20	250	270	
			22	240	240	
	N 7 (C) 2 - 1, 1 (Z)	Zweiflächige Klaue	95	25	220	220
	N Zweiflächige Klaue	28 19	28	190	190	
			170	170		
			36	150	150	

Mehrfach-Zahnradpumpen

Zahnradpumpen eignen sich für Mehrfachanordnungen, wobei die Triebwelle der 1. Pumpenstufe zu einer 2. und eventuell 3. Pumpenstufe durchgeführt wird. Die Wellenverbindung zwischen den einzelnen Stufen erfolgt standardmäßig über einen Mitnehmer bzw. über eine verzahnte Kupplung (verstärkter Durchtrieb).

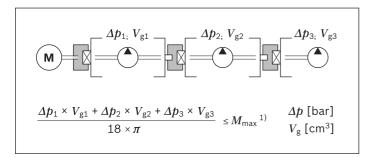
Die einzelnen Pumpenstufen sind meist hydraulisch gegeneinander abgedichtet und haben separate Sauganschlüsse. Ein gemeinsamer Sauganschluss oder getrennte Sauganschlüsse mit hydraulischer Verbindung sind auf Anfrage möglich.

Bei der Konfiguration von Mehrfachpumpen empfiehlt Bosch Rexroth die Pumpenstufe mit dem größten Verdrängungsvolumen antriebsseitig anzuordnen.

Hinweis

Grundsätzlich gelten die Kenngrößen der Einzelpumpen, jedoch sind verschiedene Einschränkungen zu beachten:

► Maximale Drehzahl:

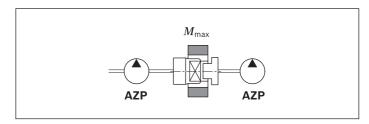

Diese wird von der größten verwendeten Pumpenstufe bestimmt.

▶ Drücke:

Diese werden durch die maximal übertragbaren Drehmomente von Triebwelle, Durchtrieb und Mitnehmer eingeschränkt.

Addition der Antriebsmomente

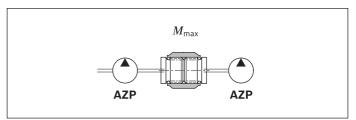
Bei Mehrfachpumpen ist zu beachten, dass sich die Antriebsmomente der nachfolgenden Stufen entsprechend folgender Formel addieren:



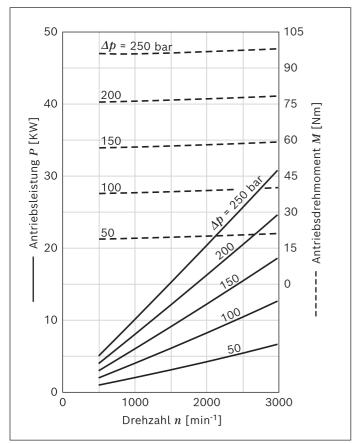
Hieraus ergeben sich ggf. Druckeinschränkungen in den jeweiligen Pumpenstufen.

Standarddurchtrieb (Kupplungsklaue)

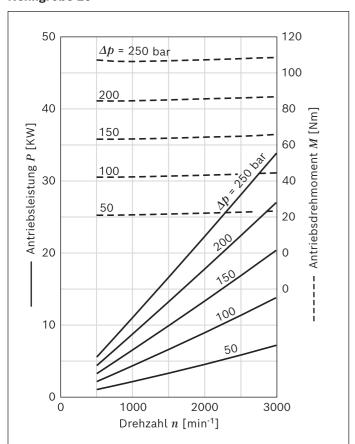
Bei Plattform N (AZPN, AZPT) ist der Mitnehmer für die nachfolgende Pumpenstufe belastbar bis $M_{\rm max}$ = 95 Nm. Mögliche Druckeinschränkung für nachfolgende Pumpenstufen sind zu beachten.


Bei nachfolgenden Pumpen einer kleineren Baureihe bestimmen diese das maximal übertragbare Moment.

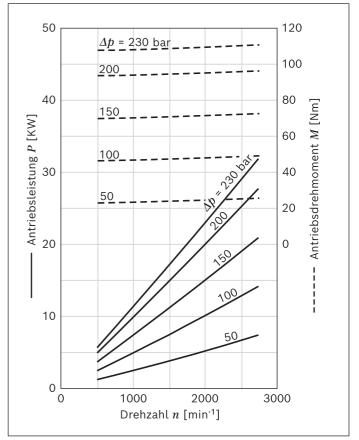
Nachfolgende Pumpe		<i>M</i> _{max} [Nm]
Plattform N	AZPN	95
Flattioiii N	AZPT	95
	AZPF-1x	65
	AZPF-2x	85
Plattform F	AZPS-1x	65
	AZPS-2x	85
	AZPJ	65
Plattform B	AZPB-3x	25

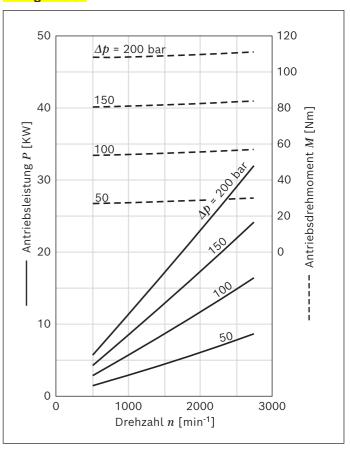

Verstärkter Durchtrieb

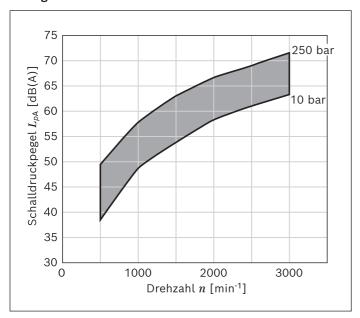
Für Anwendungen mit größeren Übertragungsmomenten bzw. Drehschwingungen stehen verstärkte Durchtriebe bis $M_{\rm max}$ = 160 Nm zur Verfügung. Auslegung auf Anfrage.

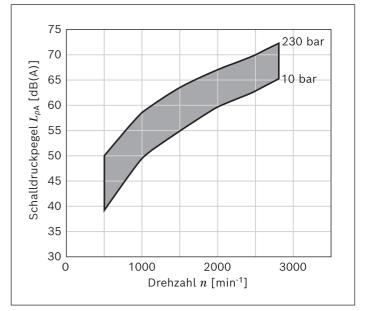


¹⁾ $M_{
m max}$: siehe Tabelle oben "Maximal übertragbare Antriebsdrehmomente"

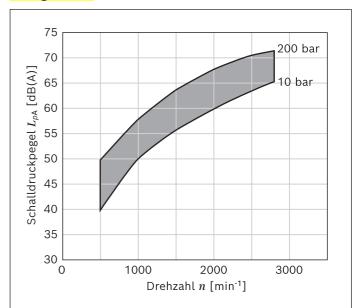

Nenngröße 22


Nenngröße 25

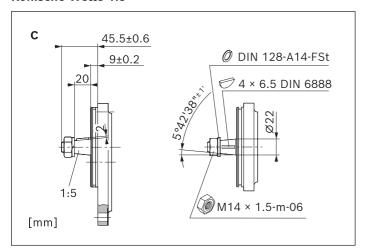

Nenngröße 28

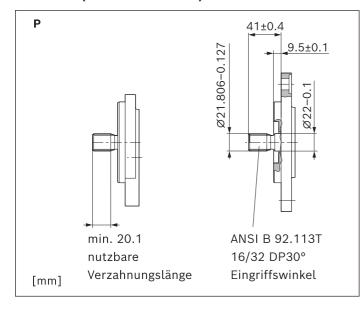

Nenngröße 32

Nenngröße 22

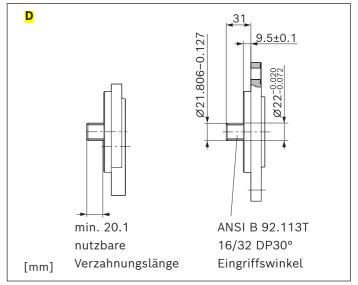

Nenngröße 28

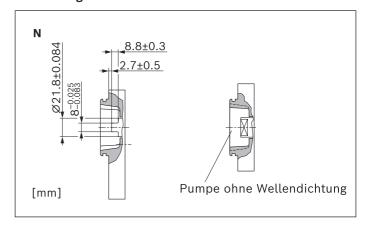
Nenngröße 25


Nenngröße 32

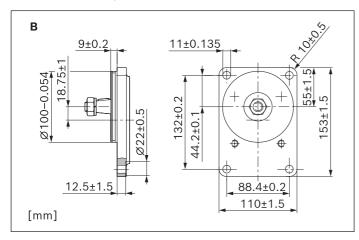

Abmessungen

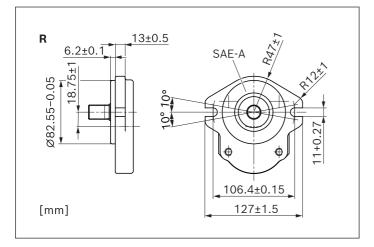
Triebwellen


Konische Welle 1:5¹⁾

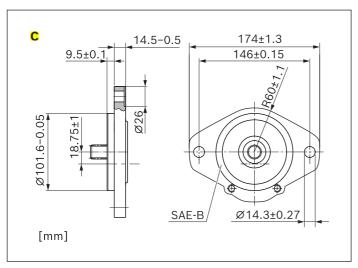

Zahnwelle (SAE J744 19-4 11T)

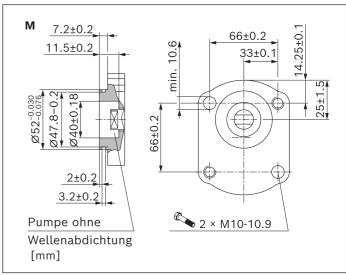
Zahnwelle (SAE J744 22-4 13T)


Zweiflächige Klaue

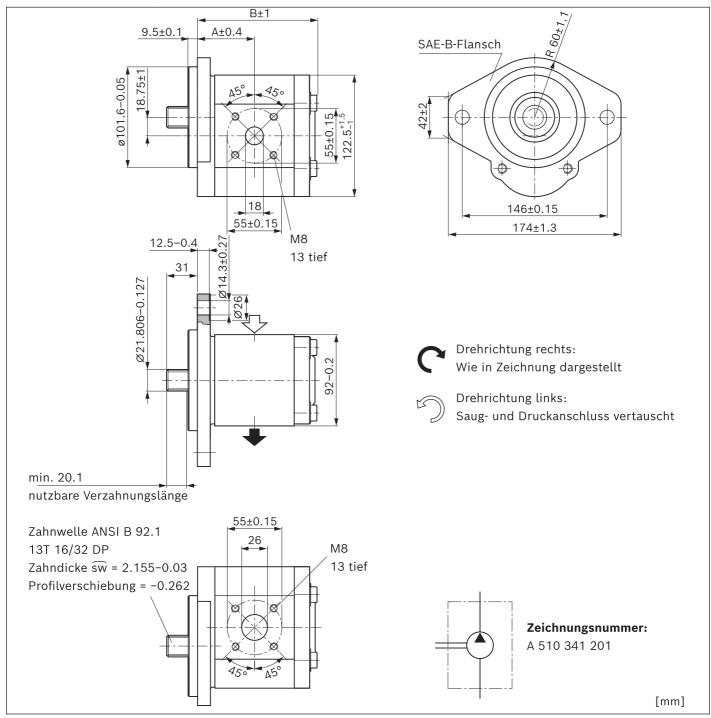

¹⁾ Die Scheibenfeder kann je nach Ausführung lose in der Nut sein

Frontdeckel


Rechteckflansch Ø100 mm


2-Lochflansch Ø82.55 mm, SAE J744 82-2 (A)

2-Lochflansch Ø101.6 mm, SAE J744 101-2 (B)



2-Lochbefestigung Ø52 mm, mit O-Ring

Zahnwelle (SAE J744 22-4 13T) mit 2-Lochflansch Ø101.6 mm

AZPN - 1X - ... **DC20**MB / AZPN - 1X - ... **DC20**KB

	Materialnummer		Höchstdruck intermittierend	Drehzahl maximal	hzahl maximal Masse Abmessur		en
NG	Drehrichtung		p_2	n_{max}	m	Α	В
	links	rechts	bar	min ^{.1}	kg	mm	mm
20			250	2500		52	110.1
22			250	2500		53.5	112.6
25	0 510 725 377	0 510 725 057	250	2500	5.5	55	115.3
25		0 510 725 094	250	2500	5.5	55	115.3
28	0 510 725 431	0 510 725 058	230	2500	5.7	56.5	118.3
36	0 510 725 363	0 510 725 155	180	2500	6	61	123.3