
E*P4

PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (C*P4) CONTROLLED

E4P4 CETOP P05 E4R4 ISO 4401-05 E5 ISO 4401-08

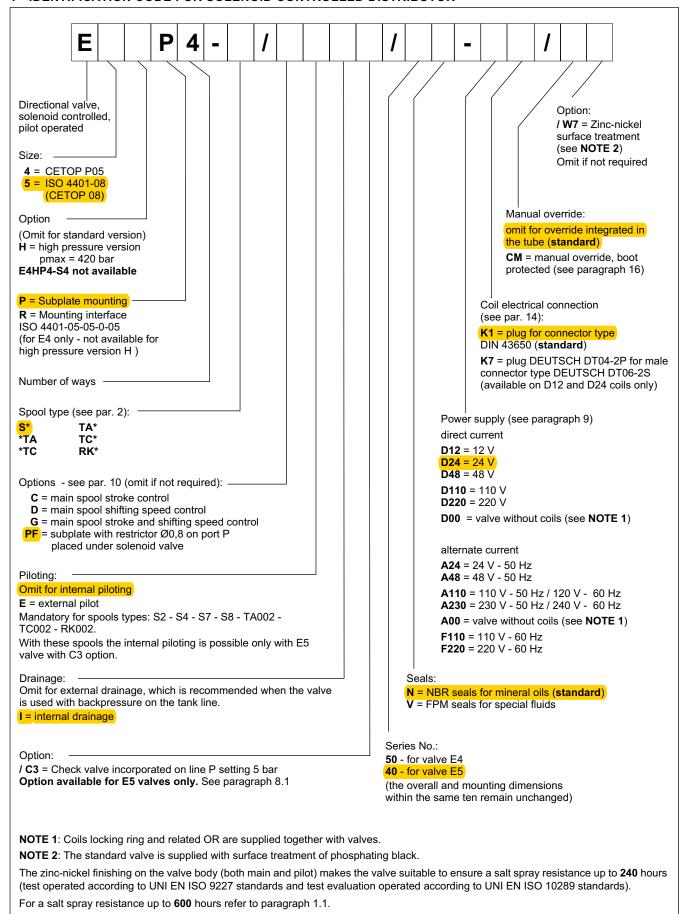
p max (see table of performances)Q max (see table of performances)

OPERATING PRINCIPLE

- The E*P4 piloted valves are constituted of a 4-way hydraulic operated distributor with a mounting surface in accordance with the ISO 4401 standards, operated by a ISO 4401-03 solenoid directional valve.
- They are made in CETOP P05 and ISO 4401-05 sizes with flow rates up to 150 l/min, and in ISO 4401-08 size with flow rates up to 600 l/min.
- They are available with different spool types (see par. 2) and with some options for the opening control.
- They are available with both the solenoid and the hydraulic control from the X and Y ways.
- A version for high pressures (H) is available.
- It is available also with zinc-nickel surface treatments, that ensures a salt spray resistance up to 600 hours.

PERFORMANCES

(obtained with mineral oil of viscosity of 36 cSt at 50°C)

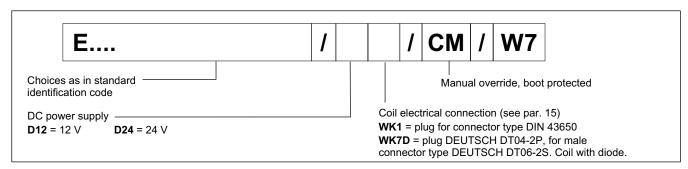

		E4*4	E4HP4	E5P4	E5HP4
Maximum operating pressure - ports P - A - B - port T (external drainage) - port T (internal drainage) (DC / AC)		320 210 210 / 160	420 350 210 / 160	320 210 210 / 160	420 350 210 / 160
Maximum flow rate from port P to A - B - T		150		600	
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt	cSt 10 ÷ 400			
Fluid contamination degree	-	according to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	cSt 25			
Mass: E*P4-S, RK E*P4-TA/TC		6	7 ,4		5,6 5,0

41 400/116 ED 1/12

E*P4

1 - IDENTIFICATION CODE FOR SOLENOID CONTROLLED DISTRIBUTOR

41 400/116 ED 2/12

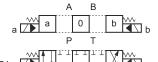


1.1 - High corrosion resistance version

This version, available for the basic valve (without option of par. 10) features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600 hours** (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

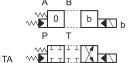
The coil are DC only and specific for this version, featuring a zinc-nickel surface treatment. The coil for DEUTSCH connector has a diode inside. Electrical features at paragraph 9.2. The boot manual override (CM) is installed as standard in order to protect the solenoid tube.

Follow the identification code below to order it

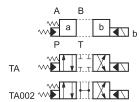


2 - SPOOLS TYPES

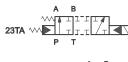
Symbols are referred to the solenoid valve E*. For the hydraulic operated version C* please verify the connection scheme (see par. 4).



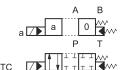
3 positions with spring centering


Type *TA:

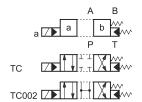
2 positions (central + external) with spring centering


Type TA:

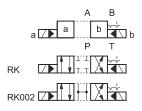
2 external positions with return spring


Type **23 (TA/TC)**:

3-way, 2 external positions with return spring


Type *TC:

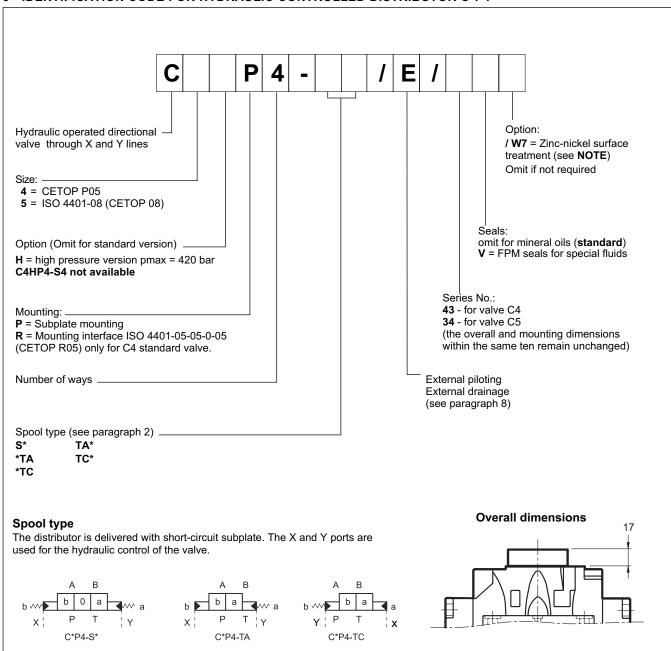
2 positions (central + external) with spring centering


Type **TC**:

2 external positions with return spring

Type RK:

2 positions with mechanical detent on pilot valve



Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

41 400/116 ED 3/12

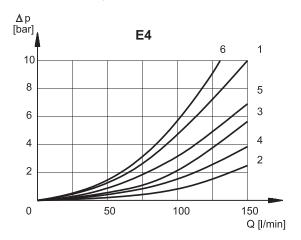
3 - IDENTIFICATION CODE FOR HYDRAULIC CONTROLLED DISTRIBUTOR C*P4

4 - HYDRAULIC FLUIDS

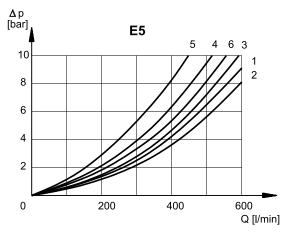
Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N for solenoid controlled distributors, omit for hydraulic controlled). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.


41 400/116 ED 4/12

5 - PRESSURE DROPS Δp -Q


(values obtained with viscosity 36 cSt at 50 °C)

5.1 - Pressure drops E4P4

SPOOL POSITION SPOOL TYPE CURVES ON GRAPH 2 3 S1 Energized De-energized Energized 6* S2 5 5 De-energized 1• 2 S3 Energized De-energized 6 S4 6 3 5 Energized 6 De-energized 1 5 S5 1 2 3 Energized De-energized S6 2 1 Energized De-energized 6° S7 6 6 Energized 3 5 De-energized 6• S8 6 6 3 5 Energized 1 1 2 2 S9 Energized De-energized 1¹ 5 1° 5 S10 2 3 Energized De-energized S11 Energized 3 De-energized 5 5 S18 2 Energized 3 De-energized Energized 1 3 TΑ 4 1 4 3 RK Energized

5.2 - Pressure drops E5P4

		E5				
				NNECTIO		
SPOOL TYPE	SPOOL	$P \rightarrow A$	$P \rightarrow B$	$A \rightarrow T$	$B \rightarrow T$	$P \rightarrow T$
	POSITION		CURVE	S ON G	RAPH	-
S1	Energized	1	1	2	3	
S2	De-energized Energized	2	2	1	2	6*
S3	De-energized Energized	1	1	4 • 1	4° 2	
S4	De-energized Energized	6	6	3	4	5
S5	De-energized Energized	1	4 2	2	3	
S6	De-energized Energized	1	1	2	4 2	
S7	De-energized Energized	6	6	3	4	5°
S8	De-energized Energized	6	6	4	3	5*
S9	Energized	1	1	2	3	
S10	De-energized Energized	4° 2	4° 2	2	3	
S11	De-energized Energized	1	1	3 1	3	
S18	De-energized Energized	4 2	1	2	3	
TA	De-energized Energized	1	1	2	3	
RK	Energized	1	1	2	3	

^{*} A-B blocked • B blocked • A blocked

41 400/116 ED 5/12

^{*} A-B blocked • B blocked • A blocked

6 - SWITCHING TIMES

6.1 - E4P4

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

E4							
TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED				
[ms]	2 Pos.	3 Pos.	2 Pos.	3 Pos.			
CA solenoid	35	25	35	25			
DC solenoid	60	50	50	40			

6.2 - E5P4

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

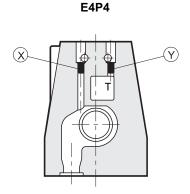
E5							
TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED				
[ms]	2 Pos.	2 Pos. 3 Pos.		3 Pos.			
CA solenoid	70	40	70	40			
DC solenoid	100	70	80	50			

7 - PERFORMANCE CHARACTERISTICS

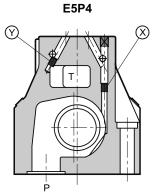
E4 - PRESSURES [bar]	E4*4	E4HP4	C4*4	C4HP4
Max pressure in P, A, B ports	320	420	320	420
Max pressure in T line with external drainage	210	350	210	350
Max pressure in T line with internal drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Max pressure in Y line with external drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Min piloting pressure NOTE 1	5 ÷ 12			
Max piloting pressure	210	350	210	350

E5 - PRESSURES [bar]	E4*4	E4HP4	C4*4	C4HP4
Max pressure in P, A, B ports	320	420	320	420
Max pressure in T line with external drainage	210	350	210	350
Max pressure in T line with internal drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Max pressure in Y line with external drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Min piloting pressure NOTE 1	5 ÷ 12			
Max piloting pressure	210	350	210	350

NOTE 1 minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.


MAXIMUM FLOW RATES [I/min]	E	4	E5			
	PRESSURES					
Spool type	at 210 bar	at 320 bar	at 210 bar	at 280 bar		
S4, S7, S8	120	100	500	450		
All other spools	150	120	600	500		

41 400/116 ED 6/12

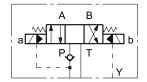


8 - PILOTING AND DRAINAGE

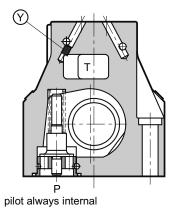
The E*P4 valves are available with piloting and drainage, both internal and external. The version with external drainage allows for a higher back pressure on the outlet.

X: plug M5x6 for external pilot **Y**: plug M5x6 for external drain

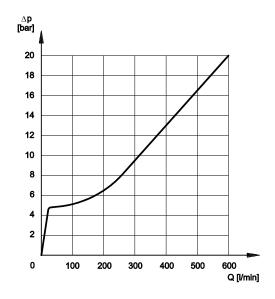
X: plug M6x8 for external pilot Y: plug M6x8 for external drain


	TYPE OF VALVE		sembly
	THEOFVALVE	Х	Y
E*P4-**	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES
E*P4-**/I	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO
E*P4-**/ E	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES
E*P4-**/ EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO

8.1 - Backpressure valve incorporated on line P available for E5 valve only)


Valve E5 is available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in the rest position, has the line P connected to the T outlet (spools S2 - S4 - S7 - S8 - TA002 - TC002 - RK002). The cracking pressure is of 5 bar.

Add C3 to the identification code for this request (see paragraph 1). In the C3 version the piloting is always internal.



E5P4 (with C3 option)

Y: plug M6x8 for external drain

NOTE: the backpressure valve can't be used as direct check valve because it doesn't assure the seal.

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added. (see paragraph 5)

41 400/116 ED 7/12

9 - ELECTRICAL FEATURES

9.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see catalogue. 49 000).

Protection from atmospheric agents IEC 60529

Connection	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K7 DEUTSCH DT04 male	х	х	x (*)

^(*) The protection degree is guaranteed only with the connector correctly connected and installed

VOLTAGE SUPPLY FLUCTUATION	±10% Vnom
MAX SWITCH ON FREQUENCY E4 E5	10.000 ins/hr 8.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	According to 2004/108/EC
LOW VOLTAGE	According to 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (IEC 60529) Coil insulation (VDE 0580) Impregnation: DC valve	IP 65 (NOTE 2) class H class F class H

9.2 - DC coils

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: V = R x I.

The WK1 and WK7D are coils specific for the high corrosion resistance version of the valve.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits by approximately 5 ÷ 10%.

The table shows current and power consumption values relevant to DC coils.

(values ±10%)

	Resistance at 20°C [Ω]	Current consumption [A]	Power consumption [W]	K1	Coil WK1	code K7	WK7D
D12	4,4	2,72	32,7	1903080	1903050	1902940	1903400
D24	18,6	1,29	31	1903081	1903051	1902941	1903401
D48	78,6	0,61	29,5	1903083			
D110	436	0,26	28,2	1903464			
D220	1758	0,13	28,2	1903465			

9.3 - AC coils

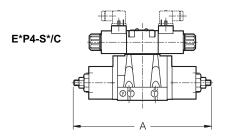
The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Coils for alternating current (values ± 5%)

no ioi aitoii	lating current (va	11403 = 0 70						
Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [Ohm] (±1%)	Current consumption at inrush [A] (±5%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±5%) [VA]	Power consumption at holding (±5%) [VA]	Coil Code
A24	24	50	1,46	8	2	192	48	1902830
A48	48	30	5,84	4,4	1,1	204	51	1902831
A110	110V-50Hz		32	1,84	0,46	192	48	1902832
ATIO	120V-60Hz	50/60	32	1,56	0,39	188	47	1902032
A230	230V-50Hz	30/00	140	0,76	0,19	176	44	1902833
A230	240V-60Hz		140	0,6	0,15	144	36	1902033
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220	00	106	0,8	0,2	180	45	1902835

41 400/116 ED **8/12**

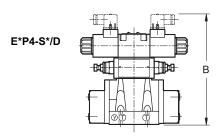
E*P4


10 - OPTIONS

10.1 - Control of the main spool stroke: C

It is possible to introduce special stroke controls in the heads of the hydraulic pilot operated valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

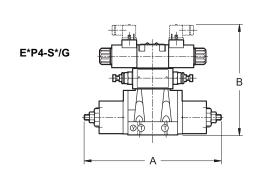

Add the letter C to the identification code to request this device (see paragraph 1).

10.2 - Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the hydraulic operated valve, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 1).

10.3 - Subplate with throttle on line P


It is possible to introduce a subplate with a restrictor of \emptyset 0,8 on line P between the pilot solenoid valve and the main distributor.

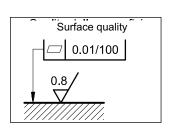
Add PF to the identification code to request this option (see paragraph 1).

10.4 - Control of the main spool stroke and shifting speed: G

It is possible to have the valve fitted with both the spool stroke device and the piloting flow rate control device.

Add the letter **G** to the identification code to request this solution (see paragraph 1).

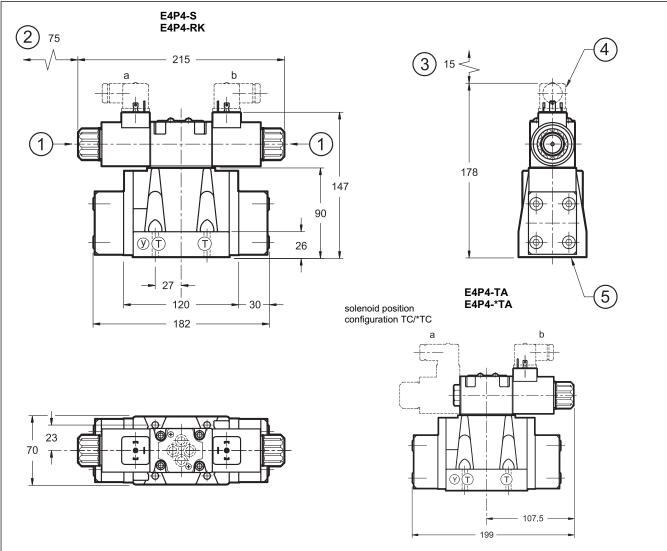
dimensions in mm

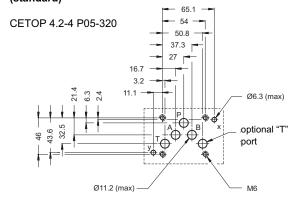

	E4	E5
A	280	401,5
В	218	254

11 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

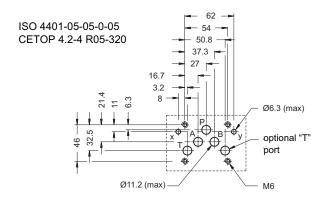
Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.


NOTE: Use of class 10.9 fastening screws is recommended for valves in version H (high pressure).


41 400/116 ED 9/12

12 - E4 OVERALL AND MOUNTING DIMENSIONS

MOUNTING INTERFACES (standard)

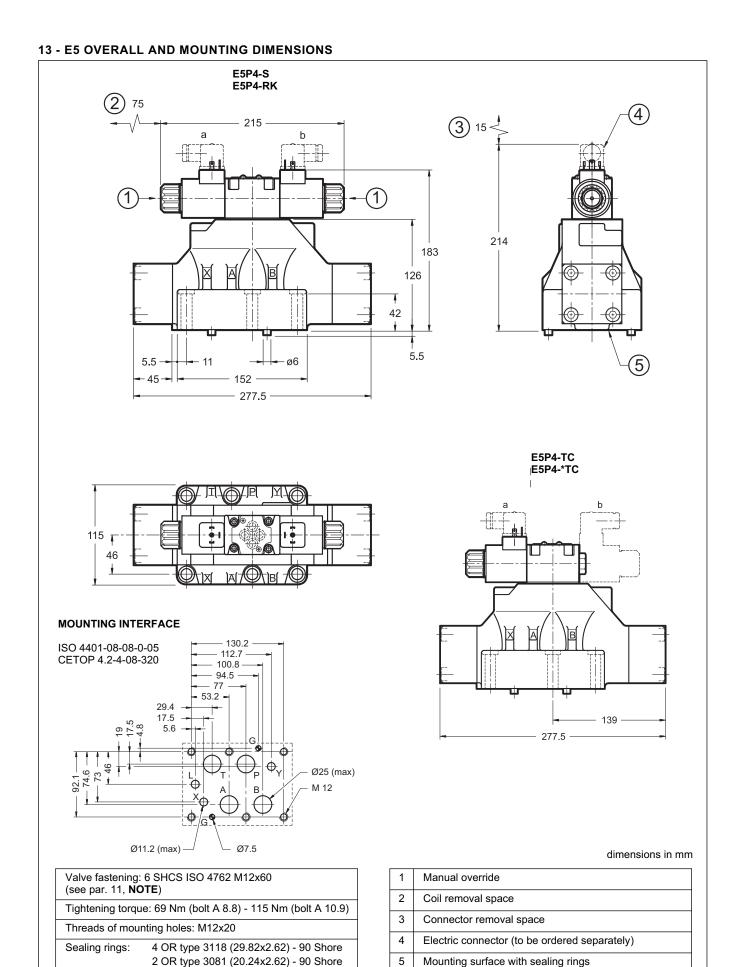

Valve fastening: 4 SHCS ISO 4762 M6x35 (see par. 11, **NOTE**)

Tightening torque: 8 Nm (bolt A 8.8) - 12 Nm (bolt A 10.9)

Threads of mounting holes: M6x10

Sealing rings: N. 5 OR type 2050 (12.42x1.78) - 90 Shore N. 2 OR type 2037 (9.25x1.78) - 90 Shore

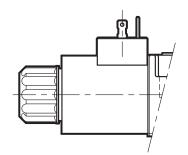
Valves with ISO 4401-05-05-0-05 mounting interface are available upon request. See par. 1 for their identification.

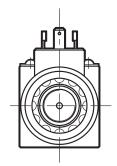


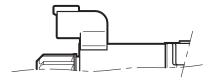
dimensions in mm

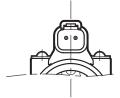
1	Manual override
2	Coil removal space
3	Connector removal space
4	Electric connector (to be ordered separately)
5	Mounting surface with sealing rings

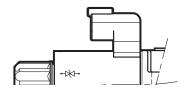
41 400/116 ED 10/12




41 400/116 ED 11/12


14 - ELECTRIC CONNECTIONS


connection for DIN 43650 connector code **K1** (standard) code **WK1** (W7 version only)




connection for DEUTSCH DT06-2S male connector type code **K7**

connection for DEUTSCH DT06-2S male connector - coil with diode code **WK7D** (W7 version only)

15 - ELECTRIC CONNECTORS

The valves are delivered without connectors. Connectors for K1/ WK1 connections (DIN 43650) can be ordered separately. See catalogue 49 000.

16 - MANUAL OVERRIDE

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended. For overall dimensions see catalogue 41 150.

Add the suffix CM to request this device (see paragraph 1).

17 - SUBPLATES

(see catalogue 51 000)

These plates are not suitable for high pressure valves E4HP4 and E5HP4..

	E4	E5
Type with rear ports	PME4-AI5G	
Type with side ports	PME4-AL5G	PME5-AL8G
P, T, A, B, port dimensions	3/4"	1½" BSP
X, Y port dimensions	1/4" BSP	1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339

 $www.duplomatic.com \bullet e\text{-mail: } sales.exp@duplomatic.com$