
# Axialkolbenpumpen

Serie PVplus – Design Serie 47 Verstellbare Ausführung



## Mit Durchtrieb für Einfach- und Mehrfachpumpen

Schrägscheibenpumpe für offene Kreisläufe.



## **Technische Merkmale**

- geräuscharm
- · kurze Regelzeit
- · servicefreundlich
- hohe Maximaldrehzahl
- kompaktes Design
- 100 % Durchtriebsdrehmoment

## Allgemeine Information

## **Empfohlene Flüssigkeit**

Qualitativ hochwertige mineralische Hydraulikflüssigkeit, z. Bsp. HLP Öle nach DIN 51524, (Teil 2 & 3) oder ISO6743/4 (HM & HV), empfohlene Brugger-Werte für allgemeine Anwendungen mindestens 30 N/mm² und für hochbelastete Anlagen 50 N/mm², gemessen nach DIN 51 347-2, siehe auch Dokument HY30-3248/DE Parker "Hydraulik Flüssigkeit"

#### Viskosität

Viskosität unter normalen Bedingungen sollte bei 16 bis 100 mm2/s (cSt) liegen. Maximale Anlaufviskosität ist 1000 mm2/s (cSt).

#### Reinheit

Die Reinheit der Flüssigkeit sollte in Übereinstimmung mit ISO 4406: 1999 gegeben sein. Wirkungsvolle Filtration sorgt für maximale Funktion der Pumpen und Systemkomponenten.

Auch die Filterelemente sollten ISO-Standard entsprechen. Für maximale Lebensdauer Reinheitsgrad 18/16/13 entsprechend ISO 4406:1999; sonst Reinheitsgrad 20/18/15 entsprechend ISO 4406:1999.

#### **Dichtungen**

Bitte die Verträglichkeit des Dichtungsmaterials mit der Fluidspezifikation prüfen.

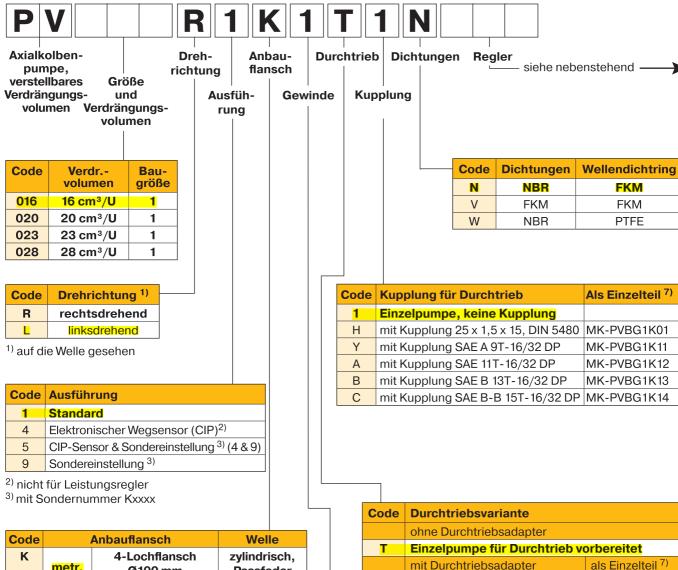
Temperaturbereich des Dichtungsmaterials mit maximaler System- und Umgebungstemperatur abgleichen.

N – Nitrile (FKM Wellendichtring) -25...+90 °C

V – FKM (FKM Wellendichtring) -25...+115 °C

W - Nitrile (PTFE Wellendichtring) -30...+90 °C

**Bitte beachten:** Die höchste Temperatur, bis zu +25 °C über Zulauftemperatur, kann am Leckölanschluss entstehen.




|                                                        |                      | PV016  | PV020  | PV023  | PV028  | PV032  | PV040  | PV046  |
|--------------------------------------------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|
| Baugröße                                               |                      | 1      | 1      | 1      | 1      | 2      | 2      | 2      |
| Max. Verdrängungsvolumen                               | [cm <sup>3</sup> /U] | 16     | 20     | 23     | 28     | 32     | 40     | 46     |
| Fördermenge bei 1.500 U/min                            | [l/min]              | 24     | 30     | 34,5   | 42     | 48     | 60     | 69     |
| Nominaldruck pN                                        | [bar]                | 350    | 350    | 350    | 350    | 350    | 350    | 350    |
| Minimaldruck Hochdruckseite                            | [bar]                | 15     | 15     | 15     | 15     | 15     | 15     | 15     |
| Maximaldruck Pmax 20 % vom Arbeitszyklus <sup>1)</sup> | [bar]                | 420    | 420    | 420    | 420    | 420    | 420    | 420    |
| Max. Gehäusedruck, permanent                           | [bar]                | 0,5    | 0.5    | 0,5    | 0,5    | 0,5    | 0,5    | 0,5    |
| Max. Gehäusedruck, Druckspitzen                        | [bar]                | 2,0    | 2,0    | 2,0    | 2,0    | 2,0    | 2,0    | 2,0    |
| Min. Eingangsdruck absolut                             | [bar]                | 0,8    | 0,8    | 0,8    | 0,8    | 0,8    | 0,8    | 0,8    |
| Max. Eingangsdruck                                     | [bar]                | 16     | 16     | 16     | 16     | 16     | 16     | 16     |
| Eingangsleistung bei 1.500 U/min, 350 bar              | [kW]                 | 15,9   | 19,7   | 22,4   | 26,9   | 31,1   | 38,5   | 43,8   |
| max. Eingangsdrehmoment bei 350 bar                    | [Nm]                 | 94,5   | 118,1  | 135,9  | 165,4  | 184,3  | 230,4  | 265,0  |
| Höchstdrehzahl bei Einlassdruck<br>1 bar abs.          | [min <sup>-1</sup> ] | 3000   | 3000   | 3000   | 3000   | 2800   | 2800   | 2800   |
| Minimaldrehzahl                                        | [min <sup>-1</sup> ] | 50     | 50     | 50     | 50     | 50     | 50     | 50     |
| Massenträgheitsmoment                                  | [kgm <sup>2</sup> ]  | 0,0016 | 0,0016 | 0,0016 | 0,0016 | 0,0047 | 0,0047 | 0,0047 |
| Masse                                                  | [kg]                 | 19     | 19     | 19     | 19     | 30     | 30     | 30     |

|                                                        |                      | PV063 | PV080 | PV092 | PV140 | PV180  | PV270  | PV360  |
|--------------------------------------------------------|----------------------|-------|-------|-------|-------|--------|--------|--------|
| Baugröße                                               |                      | 3     | 3     | 3     | 4     | 4      | 5      | 6      |
| Max. Verdrängungsvolumen                               | [cm <sup>3</sup> /U] | 63    | 80    | 92    | 140   | 180    | 270    | 360    |
| Fördermenge bei 1.500 U/min                            | [l/min]              | 94,5  | 120   | 138   | 210   | 270    | 405    | 540    |
| Nominaldruck pN                                        | [bar]                | 350   | 350   | 350   | 350   | 350    | 350    | 350    |
| Minimaldruck Hochdruckseite                            | [bar]                | 15    | 15    | 15    | 15    | 15     | 15     | 15     |
| Maximaldruck Pmax 20 % vom Arbeitszyklus <sup>1)</sup> | [bar]                | 420   | 420   | 420   | 420   | 420    | 420    | 420    |
| Max. Gehäusedruck, permanent                           | [bar]                | 0,5   | 0,5   | 0,5   | 0,5   | 0,5    | 0,5    | 0,5    |
| Max. Gehäusedruck, Druckspitzen                        | [bar]                | 2,0   | 2,0   | 2,0   | 2,0   | 2,0    | 2,0    | 2,0    |
| Min. Eingangsdruck absolut                             | [bar]                | 0,8   | 0,8   | 0,8   | 0,8   | 0,8    | 0,8    | 0,8    |
| Max. Eingangsdruck                                     | [bar]                | 16    | 16    | 16    | 16    | 16     | 16     | 16     |
| Eingangsleistung bei 1.500 U/min, 350 bar              | [kW]                 | 61,3  | 76,9  | 87,5  | 136,1 | 173,1  | 259,6  | 338,7  |
| max. Eingangsdrehmoment bei 350 bar                    | [Nm]                 | 365,2 | 463,7 | 533,3 | 812,4 | 1044,5 | 1550,5 | 2067,4 |
| Höchstdrehzahl bei Einlassdruck<br>1 bar abs.          | [min <sup>-1</sup> ] | 2800  | 2500  | 2300  | 2400  | 2200   | 1800   | 1750   |
| Minimaldrehzahl                                        | [min <sup>-1</sup> ] | 50    | 50    | 50    | 50    | 50     | 50     | 50     |
| Massenträgheitsmoment                                  | [kgm <sup>2</sup> ]  | 0,018 | 0,018 | 0,018 | 0,030 | 0,030  | 0,098  | 0,103  |
| Masse                                                  | [kg]                 | 59    | 59    | 59    | 90    | 90     | 172    | 180    |

<sup>1)</sup> Einstellbereich des gewählten Reglers prüfen.





| Code | 1                               | Anbauflansch             | Welle                       |  |  |
|------|---------------------------------|--------------------------|-----------------------------|--|--|
| K    | 4-Lochflansch<br>Metr. Ø100 mm  |                          | zylindrisch,<br>Passfeder   |  |  |
| L    | 3019/2                          | 4-Lochflansch<br>Ø100 mm | Vielkeilprofil,<br>DIN 5480 |  |  |
| D    | SAE<br>ISO                      | 4-Lochflansch SAE B      | zylindrisch,<br>Passfeder   |  |  |
| Е    | 3019/1 4-Lochflansch SAE<br>B-B |                          | Vielkeilprofil,<br>SAE      |  |  |

| Code | Anschluss <sup>4)</sup> | Gewinde <sup>5)</sup> |
|------|-------------------------|-----------------------|
| 1    | BSPP                    | metrisch              |
| 3    | UNF                     | UNC                   |
| 86)  | ISO 6149                | metrisch              |

metrisch, Ø 100 mm

SAE A-2 Loch, Ø 82,55 mm

SAE B-4 Loch, Ø 101,6 mm

MK-PVBG1Axx

MK-PVBG1Bxx MK-PVBG1Jxx

Α

В

J

Standard Pumpe ist nicht lackiert. Schwarz lackierte Pumpe und ATEX (ausgenommen elektronisches Zubehör) Zertifikat (Zone 2) sind als Sonderoption erhältlich. Für weitere Informationen kontaktieren Sie bitte Parker Hannifin.



Siehe Abmessung für Details.

7) für separate Bestellung als Einzelteil siehe Seite 63.

<sup>4)</sup> Lecköl-, Steuer- und Spülanschluss

<sup>5)</sup> Arbeitsanschlüsse

<sup>6)</sup> nur für Anbauflansch, Code K und L

| ( | Code | е | Reglerausführung                                             |  |  |  |  |  |
|---|------|---|--------------------------------------------------------------|--|--|--|--|--|
| 0 | 0    | 1 | ohne Regler                                                  |  |  |  |  |  |
| 1 | 0    | 0 | mit Verschlussplatte, keine Reglerfunktion (Konstantpumpe)   |  |  |  |  |  |
| M | M    |   | Standard-Druckregler                                         |  |  |  |  |  |
| М | R    |   | Druckregler mit Fernsteuer-Anschluss                         |  |  |  |  |  |
| М | F    |   | Druck-Förderstrom-Regler (Load-Sensing)                      |  |  |  |  |  |
| М | Т    |   | Zwei-Ventil-LS-Regler                                        |  |  |  |  |  |
|   |      |   | Regler Variation                                             |  |  |  |  |  |
|   |      | С | Standardausführung mit integriertem Druck-Pilotventil 1)     |  |  |  |  |  |
|   |      | 1 | Lochbild NG6 auf Regleroberseite 1)                          |  |  |  |  |  |
|   |      | 2 | Druckfernsteueranschluss interne Versorgung, NG6-Lochbild 2) |  |  |  |  |  |
|   |      | 3 | Druckfernsteueranschluss externe Versorgung 2)               |  |  |  |  |  |
|   |      | W | mit Drucklosschaltung, 24 VDC Magnet 1)                      |  |  |  |  |  |
|   |      | K | PropPilotventil Typ PVACREK35 aufgebaut                      |  |  |  |  |  |
|   | Z    |   | ohne integriertes Druck-Pilotventil, NG6-Lochbild,           |  |  |  |  |  |
|   |      |   | zum Aufbau von Zubehör Code PVAC*                            |  |  |  |  |  |
|   |      | В | ohne integriertes Druck-Pilotventil, ohne NG6-Lochbild 3)    |  |  |  |  |  |
|   | Р    |   | MTZ mit aufgebautem Pilotventil PVAC1P <sup>2)</sup>         |  |  |  |  |  |

<sup>1)</sup> nicht für MT & \*Z
2) nur für MT

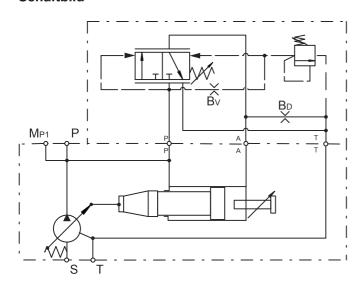
<sup>3)</sup> nicht für MT & MM

|   | Leistungs- bzw. Momentenregelung |         |                                                    |                                                          |  |  |  |  |  |  |
|---|----------------------------------|---------|----------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| C | Code                             | 9       |                                                    |                                                          |  |  |  |  |  |  |
|   |                                  |         | Nennleist. [kW]<br>bei 1500 min <sup>-1</sup>      | Nenn-Drehmoment                                          |  |  |  |  |  |  |
| В |                                  |         | 3 kW 20 Nm                                         |                                                          |  |  |  |  |  |  |
| С |                                  |         | 4 kW                                               | 25 Nm                                                    |  |  |  |  |  |  |
| D |                                  |         | 5,5 kW                                             | 35 Nm                                                    |  |  |  |  |  |  |
| Е |                                  |         | 7,5 kW                                             | 50 Nm                                                    |  |  |  |  |  |  |
| G |                                  |         | 11 kW                                              | 71 Nm                                                    |  |  |  |  |  |  |
| Н |                                  |         | 15 kW                                              | 97 Nm                                                    |  |  |  |  |  |  |
| K |                                  | 18,5 kW |                                                    | 120 Nm                                                   |  |  |  |  |  |  |
|   |                                  |         | Fui                                                | nktion                                                   |  |  |  |  |  |  |
|   | L                                |         | Leistungsregelung mit D                            | ruckregler <sup>4)</sup>                                 |  |  |  |  |  |  |
|   | С                                |         | Leistungsregelung mit Ei                           | nkolben- Load Sense-Regler                               |  |  |  |  |  |  |
|   | Ζ                                |         | Leistungsregelung mit Z                            | vei-Ventil-LS-Regler                                     |  |  |  |  |  |  |
|   |                                  |         | Reglera                                            | usführung                                                |  |  |  |  |  |  |
|   |                                  | С       | Standardausführung mit                             | integriertem Druck-Pilotventil 1)                        |  |  |  |  |  |  |
|   |                                  | 1       | Lochbild NG6 auf Regler                            | oberseite                                                |  |  |  |  |  |  |
|   |                                  | W       | mit Drucklosschaltung, 2                           | 4 VDC Magnet                                             |  |  |  |  |  |  |
|   |                                  | K       | PropPilotventil Typ PVACREK35 aufgebaut            |                                                          |  |  |  |  |  |  |
|   |                                  | Z       | ohne integriertes Druck-<br>zum Aufbau von Zubehör | Pilotventil, NG6-Lochbild,<br>· Code PVAC* <sup>4)</sup> |  |  |  |  |  |  |
|   |                                  | В       | ohne integriertes Druck-                           | Pilotventil, ohne NG6-Lochbild <sup>1), 4)</sup>         |  |  |  |  |  |  |
|   |                                  | Р       | *ZZ mit aufgebautem Pilo                           | otventil PVAC1P <sup>2)</sup>                            |  |  |  |  |  |  |

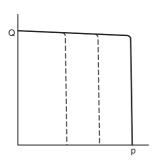
<sup>&</sup>lt;sup>4)</sup> Reglerausführung Z & B ohne Maximaldruckeinstellung

|   | Code                                        |                                                              | Reglerausführung                                                                                                               |  |  |  |  |  |
|---|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Elektrohydraulische Regelung <sup>5)</sup>  |                                                              |                                                                                                                                |  |  |  |  |  |
| F | D                                           | V Proportionalhubvolumenregelung, keine Maximaldruckregelung |                                                                                                                                |  |  |  |  |  |
| U | D                                           |                                                              | Proportionalhubvolumenregelung mit Maximaldruckregelung                                                                        |  |  |  |  |  |
|   | Ausführung                                  |                                                              |                                                                                                                                |  |  |  |  |  |
|   | R vorgesteuerter Druckregler, NG6 Lochbild  |                                                              |                                                                                                                                |  |  |  |  |  |
|   |                                             | K                                                            | vorgesteuerter Druckregler (wie UDR), mit                                                                                      |  |  |  |  |  |
|   | Proportionalpilotventil PVACREK35 aufgebaut |                                                              |                                                                                                                                |  |  |  |  |  |
|   | М                                           |                                                              | vorgesteuerter Druckregler mit Proportionalventil (wie UDK),<br>mit Drucksensor für elektronische Druck- und Leistungsregelung |  |  |  |  |  |

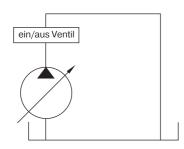
<sup>&</sup>lt;sup>5)</sup> weiterführende Informationen siehe MSG30-3254




## **Standarddruckregler**


### Code MMC

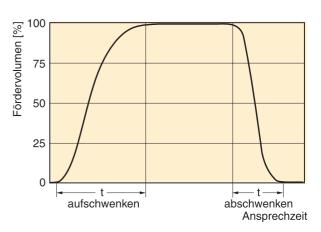
Der Standarddruckregler passt das Hubvolumen der Pumpe dem aktuellen Verbrauch an, sodass ein vorgegebener Maximaldruck konstant gehalten wird.


#### **Schaltbild**



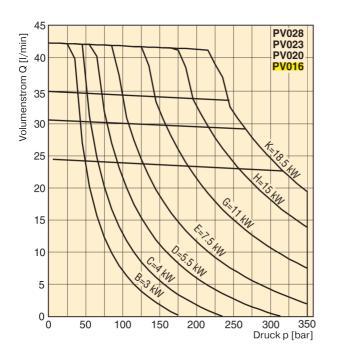
Hinweis: Für Aufrüstung auf MRC einfach den ISO 6149 M14x1,5 Stopfen entfernen. Anschlussadapter PVCCK\*\* (letzte Stellen definieren Dichtung und Gewinde) sind als Zubehör erhältlich. PVCCKN1 z.B. für NBR und auf G1/4 BSPP. Weitere Varianten finden Sie in der Ersatzteilliste.

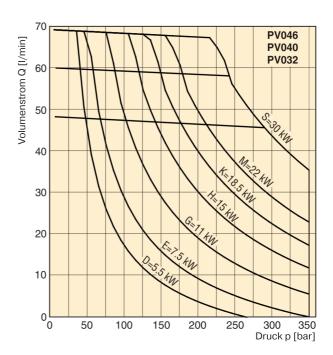


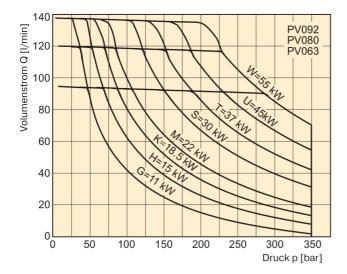

Die Ansprechzeiten der Pumpe wurden in dem unten dargestellten Hydraulikkreis durch Messung der Schwenkbewegung der Pumpe ermittelt.



|       | t aufschw       | enken [ms]       | t abschwe         | nken [ms]          |
|-------|-----------------|------------------|-------------------|--------------------|
|       | gegen<br>50 bar | gegen<br>350 bar | Nullhub<br>50 bar | Nullhub<br>350 bar |
| PV360 | 520             | 180              | 120               | 82                 |

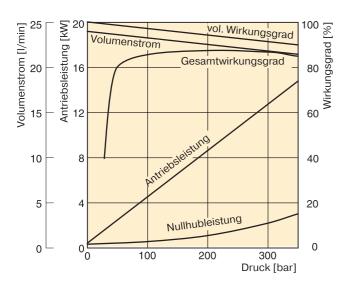

| Druckbereich                       | 15 bis 420 bar |  |  |
|------------------------------------|----------------|--|--|
| Werkseinstellung Maximaldruck      | 50 bar         |  |  |
| Differenzdruckeinstellung ΔP       | 10 bis 40 bar  |  |  |
| Werkseinstellung Differenzdruck ΔP | 15 bar         |  |  |
| Steuerölverbrauch                  | Max. 8,0 I/min |  |  |
| Steuerölverbrauch Pilotventil      | ca. 1,5 l/min  |  |  |


## Dynamische Kennlinie des Volumenstromreglers \*

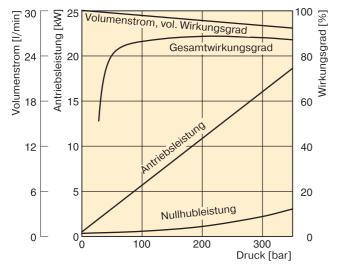



\* Kurvenverhältnisse vergrößert dargestellt

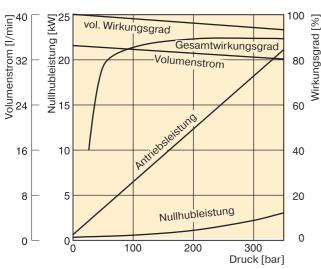
## Typische Leistungskurven









## Wirkungsgrad, Leistungsaufnahme PV016

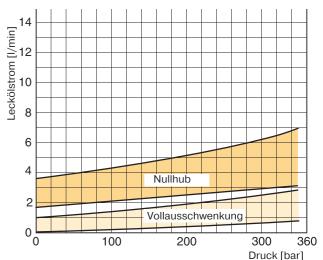


#### **PV020**

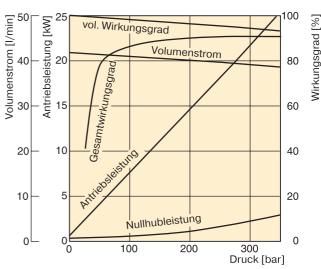


## **PV023**



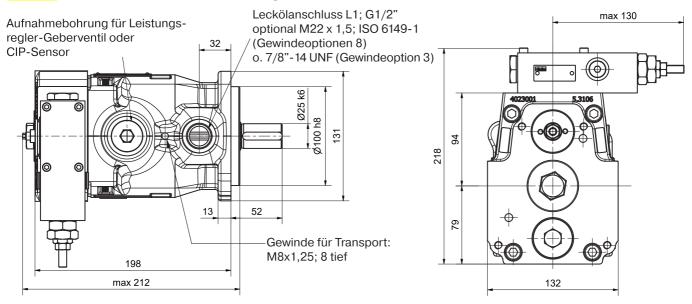

## Wirkungsgrad und Leckölverhalten PV016, PV020, PV023 and PV028

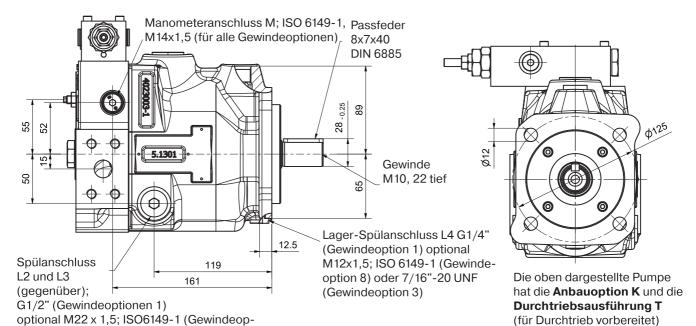
Die Wirkungsgradkennlinien sind gemessen bei einer Antriebsdrehzahl von n =  $1,500 \, \text{min}^{-1}$ , einer Temperatur von  $50 \, ^{\circ}\text{C}$  und einer Viskosität von  $30 \, \text{mm}^2/\text{s}$ .


Leckölstrom und Steuerölstrom des vorgesteuerten Reglers werden über den Leckölanschluss der Pumpe abgeführt. Bei vorgesteuerten Reglern muss zu den dargestellten Werten, wenn das Pilot-Öl durch die Pumpe abgeführt wird, ein Leckölstrom von 1,0 bis 1,2 l/min addiert werden.

**Bitte beachten Sie:** Die unten dargestellte Leckölwerte gelten nur für den statischen Betrieb. Bei dynamischer Belastung durch schnelle Regelvorgänge wird das vom Stellkolben verdrängte Öl ebenfalls über den Leckölanschluss der Pumpe abgeführt. Dieser dynamische Stellvolumenstrom kann kurzzeitig bis 40 l/min betragen. Deshalb ist die Leckölleitung mit vollem Querschnitt des Anschlusses direkt zum Behälter zu führen.

## Leckölverhalten PV016-028 mit Standard-Druckregler





## **PV028**





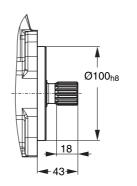
## PV016-028, metrische Ausführung





tionen 8) oder 7/8"-14 UNF (Gewindeoption 3)

**AUSGANG** für metrische und SAE Ausführung: Flansch nach ISO 6162 DN19; PN400

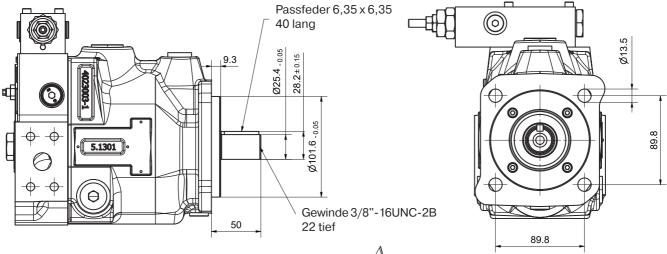

4 x M10, 18 tief optional 3/8"-16 UNC-2B (Gewindeoption 3)



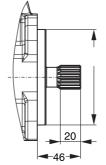
50,8

**EINGANG für metrische und SAE** Ausführung: Flansch nach ISO 6162 DN32; PN250

4 x M10, 18 tief optional 7/16"-14 UNC-2B (Gewindeoption 3)



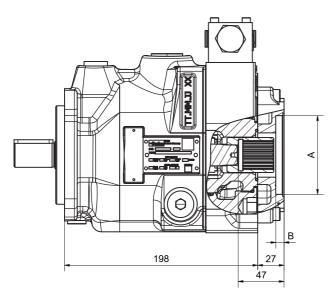

Anbauoption L Vielkeilwelle W25x1.5x15x8f **DIN 5480** 

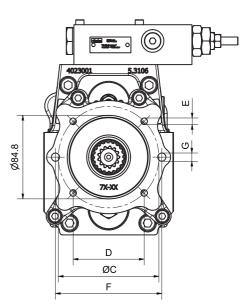

Dargestellt ist hier die Ausführung mit Standard Druckregler, code \*MMC, und Drehrichtung "rechts". Bei Drehrichtung "links" liegen die Anschlüsse spiegelbildlich.



## PV016-028, Ausführung SAE




Oben dargestellt ist die **Anbauoption D** 




### **Anbauoption E**

Vielkeilwelle 15T-16/32 DP, Abgeflachter Lückengrund flankenzentriert ANSI B92.1

### **Variante mit Durchtrieb**





| Durchtriebsadapter sind lieferbar für folgende Anbaumaße |       |      |     |      |     |     |     |              |  |  |
|----------------------------------------------------------|-------|------|-----|------|-----|-----|-----|--------------|--|--|
| Zeichnungs-<br>angabe<br>Antriebs-<br>option             | А     | В    | С   | D    | E   | F   | G   | Hinweis      |  |  |
| А                                                        | 82,55 | 8    | -   | -    | -   | 106 | M10 | SAE A 2-Loch |  |  |
| В                                                        | 101,6 | 10,5 | 127 | 89,8 | M12 | -   | -   | SAE B 4-Loch |  |  |
| J                                                        | 100   | 10,5 | 125 | 88,4 | M10 | -   | -   | 4-Loch       |  |  |