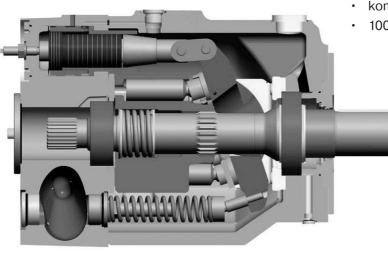


Axialkolbenpumpen

Serie PVplus – Design Serie 47 Verstellbare Ausführung



Inhalt	Seite
Einführung und allgemeine Information	4
Technische Daten	5
Bestellschlüssel	6
Druckregler	18
Fernverstellbarer Druckregler	20
Förderstromregler	22
Leistungsregler	26
Leistungskurven	30
Elektrohydraulische Regelung	32
Wirkungsgrade und Leckölverhalten	34
Reglerzubehör	40
Proportional-Druckregelventil PVACRE*	42
Abmessungen Pumpen	44
Abmessungen Regler	57
Elektronikmodul PQDXXA	61
Elektronikmodul PQDXXA-PROFINET-Z10	62
Durchtrieb – Montagesätze	63
Durchtrieb – maximale Flanschbelastung	64
Durchtrieb – Wellenbelastung	65

Mit Durchtrieb für Einfach- und Mehrfachpumpen

Schrägscheibenpumpe für offene Kreisläufe.

Technische Merkmale

- geräuscharm
- kurze Regelzeit
- servicefreundlich
- hohe Maximaldrehzahl
- kompaktes Design
- 100 % Durchtriebsdrehmoment

Allgemeine Information

Empfohlene Flüssigkeit

Qualitativ hochwertige mineralische Hydraulikflüssigkeit, z. Bsp. HLP Öle nach DIN 51524, (Teil 2 & 3) oder ISO6743/4 (HM & HV), empfohlene Brugger-Werte für allgemeine Anwendungen mindestens 30 N/mm² und für hochbelastete Anlagen 50 N/mm², gemessen nach DIN 51 347-2, siehe auch Dokument HY30-3248/DE Parker "Hydraulik Flüssigkeit"

Viskosität

Viskosität unter normalen Bedingungen sollte bei 16 bis 100 mm2/s (cSt) liegen. Maximale Anlaufviskosität ist 1000 mm2/s (cSt).

Reinheit

Die Reinheit der Flüssigkeit sollte in Übereinstimmung mit ISO 4406: 1999 gegeben sein. Wirkungsvolle Filtration sorgt für maximale Funktion der Pumpen und Systemkomponenten.

Auch die Filterelemente sollten ISO-Standard entsprechen. Für maximale Lebensdauer Reinheitsgrad 18/16/13 entsprechend ISO 4406:1999; sonst Reinheitsgrad 20/18/15 entsprechend ISO 4406:1999.

Dichtungen

Bitte die Verträglichkeit des Dichtungsmaterials mit der Fluidspezifikation prüfen.

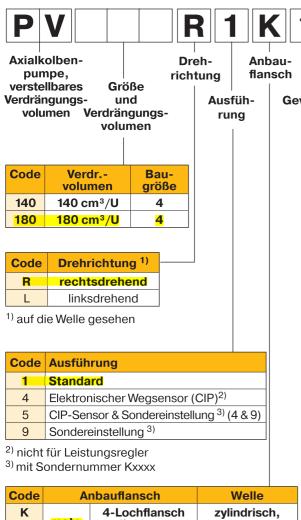
Temperaturbereich des Dichtungsmaterials mit maximaler System- und Umgebungstemperatur abgleichen.

N – Nitrile (FKM Wellendichtring) -25...+90 °C

V – FKM (FKM Wellendichtring) -25...+115 °C

W - Nitrile (PTFE Wellendichtring) -30...+90 °C

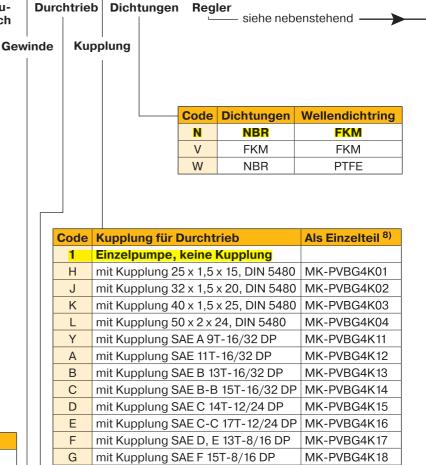
Bitte beachten: Die höchste Temperatur, bis zu +25 °C über Zulauftemperatur, kann am Leckölanschluss entstehen.



		PV016	PV020	PV023	PV028	PV032	PV040	PV046
Baugröße		1	1	1	1	2	2	2
Max. Verdrängungsvolumen	[cm ³ /U]	16	20	23	28	32	40	46
Fördermenge bei 1.500 U/min	[l/min]	24	30	34,5	42	48	60	69
Nominaldruck pN	[bar]	350	350	350	350	350	350	350
Minimaldruck Hochdruckseite	[bar]	15	15	15	15	15	15	15
Maximaldruck Pmax 20 % vom Arbeitszyklus ¹⁾	[bar]	420	420	420	420	420	420	420
Max. Gehäusedruck, permanent	[bar]	0,5	0.5	0,5	0,5	0,5	0,5	0,5
Max. Gehäusedruck, Druckspitzen	[bar]	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Min. Eingangsdruck absolut	[bar]	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Max. Eingangsdruck	[bar]	16	16	16	16	16	16	16
Eingangsleistung bei 1.500 U/min, 350 bar	[kW]	15,9	19,7	22,4	26,9	31,1	38,5	43,8
max. Eingangsdrehmoment bei 350 bar	[Nm]	94,5	118,1	135,9	165,4	184,3	230,4	265,0
Höchstdrehzahl bei Einlassdruck 1 bar abs.	[min ⁻¹]	3000	3000	3000	3000	2800	2800	2800
Minimaldrehzahl	[min ⁻¹]	50	50	50	50	50	50	50
Massenträgheitsmoment	[kgm ²]	0,0016	0,0016	0,0016	0,0016	0,0047	0,0047	0,0047
Masse	[kg]	19	19	19	19	30	30	30

		PV063	PV080	PV092	PV140	PV180	PV270	PV360
Baugröße		3	3	3	4	4	5	6
Max. Verdrängungsvolumen	[cm ³ /U]	63	80	92	140	180	270	360
Fördermenge bei 1.500 U/min	[l/min]	94,5	120	138	210	270	405	540
Nominaldruck pN	[bar]	350	350	350	350	350	350	350
Minimaldruck Hochdruckseite	[bar]	15	15	15	15	15	15	15
Maximaldruck Pmax 20 % vom Arbeitszyklus ¹⁾	[bar]	420	420	420	420	420	420	420
Max. Gehäusedruck, permanent	[bar]	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Max. Gehäusedruck, Druckspitzen	[bar]	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Min. Eingangsdruck absolut	[bar]	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Max. Eingangsdruck	[bar]	16	16	16	16	16	16	16
Eingangsleistung bei 1.500 U/min, 350 bar	[kW]	61,3	76,9	87,5	136,1	173,1	259,6	338,7
max. Eingangsdrehmoment bei 350 bar	[Nm]	365,2	463,7	533,3	812,4	1044,5	1550,5	2067,4
Höchstdrehzahl bei Einlassdruck 1 bar abs.	[min ⁻¹]	2800	2500	2300	2400	2200	1800	1750
Minimaldrehzahl	[min ⁻¹]	50	50	50	50	50	50	50
Massenträgheitsmoment	[kgm ²]	0,018	0,018	0,018	0,030	0,030	0,098	0,103
Masse	[kg]	59	59	59	90	90	172	180

¹⁾ Einstellbereich des gewählten Reglers prüfen.



Code	Aı	nbauflansch	Welle
K	metr.	4-Lochflansch Ø160 mm	zylindrisch, Passfeder
L	3019/2	4-Lochflansch Ø160 mm	Vielkeilprofil, DIN 5480
D	SAE ISO 3019/1	4-Lochflansch SAE D	zylindrisch, Passfeder, SAE F
Е		4-Lochflansch SAE D	Vielkeilprofil, SAE F, SAE D
F		4-Lochflansch SAE D	zylindrisch, Pass- feder, SAE D
G		4-Lochflansch SAE D	Vielkeilprofil, SAE D

Code	Anschluss ⁴⁾	Gewinde ⁵⁾
1	BSPP	metrisch
3	UNF	UNC
4 ⁶⁾	BSPP	metr. M14
8 ⁷⁾	ISO 6149	metrisch

⁴⁾ Lecköl-, Steuer- und Spülanschluss

Code	Durchtriebsvariante				
	ohne Durchtriebsadapter				
T	Einzelpumpe für Durchtrieb vorbereitet				
	mit Durchtriebsadapter	als Einzelteil 8)			
Α	SAE A-2, Ø 82,55 mm	MK-PVBG4Axx			
В	SAE B-2/4, Ø 101,6 mm	MK-PVBG4Bxx			
С	SAE C-2/4, Ø 127 mm	MK-PVBG4Cxx			
D	SAE D-4, Ø 152,4 mm	MK-PVBG4Dxx			
J	metrisch, Ø 100 mm	MK-PVBG4Jxx			
K	metrisch, Ø 125 mm	MK-PVBG4Kxx			
L	metrisch, Ø 160 mm	MK-PVBG4Lxx			

Siehe Abmessung für Details.

Standard Pumpe ist nicht lackiert. Schwarz lackierte Pumpe und ATEX (ausgenommen elektronisches Zubehör) Zertifikat (Zone 2) sind als Sonderoption erhältlich. Für weitere Informationen kontaktieren Sie bitte Parker Hannifin.

⁵⁾ Arbeitsanschlüsse

⁶⁾ Druckflansch 1 1/4" mit 4xM14 statt 4xM12

⁷⁾ nur für Anbauflansch, Code K und L

⁸⁾ für separate Bestellung als Einzelteil siehe Seite 63.

Co	Code		Reglerausführung
0	0	1	ohne Regler
1	0	0	mit Verschlussplatte, keine Reglerfunktion (Konstantpumpe)
М	М		Standard-Druckregler
М	R		Druckregler mit Fernsteuer-Anschluss
M	F		Druck-Förderstrom-Regler (Load-Sensing)
M	Т		Zwei-Ventil-LS-Regler
			Regler Variation
		С	Standardausführung mit integriertem Druck-Pilotventil 1)
		1	Lochbild NG6 auf Regleroberseite 1)
		2	Druckfernsteueranschluss interne Versorgung, NG6-Lochbild ²⁾
		3	Druckfernsteueranschluss externe Versorgung ²⁾
		W	mit Drucklosschaltung, 24 VDC Magnet 1)
		K	PropPilotventil Typ PVACREK35 aufgebaut
		Z	ohne integriertes Druck-Pilotventil, NG6-Lochbild,
			zum Aufbau von Zubehör Code PVAC*
		В	ohne integriertes Druck-Pilotventil, ohne NG6-Lochbild 3)
		Р	MTZ mit aufgebautem Pilotventil PVAC1P ²⁾

¹⁾ nicht für MT & *Z
2) nur für MT

³⁾ nicht für MT & MM

	Leistungs- bzw. Momentenregelung								
	Code Code								
	-		Nennleist. [kW]	Nenn-					
			bei 1500 min ⁻¹	Drehmoment					
K			18,5 kW	120 Nm					
М			22 kW	142 Nm					
S			30 kW	195 Nm					
Т			37 kW	240 Nm					
U			45 kW	45 kW 290 Nm					
W			55 kW 355 Nm						
Υ			75 kW 485 Nm						
Z			90 kW	585 Nm					
2			110 kW	700 Nm					
				ktion					
	L		Leistungsregelung mit Druckregler 4)						
	С		Leistungsregelung mit Einkolben-Load Sense-Regler						
	Ζ		Leistungsregelung mit Zwei-Ventil-LS-Regler						
				usführung					
		С	Standardausführung mit integriertem Druck-Pilotventil 1)						
		1	Lochbild NG6 auf Regleroberseite						
		W	mit Drucklosschaltung, 24 VDC Magnet						
		K	PropPilotventil Typ PVACREK35 aufgebaut						
		z	ohne integriertes Druck-F						
			zum Aufbau von Zubehör Code PVAC* 4)						
		В	ohne integriertes Druck-Pilotventil, ohne NG6-Lochbild 1), 4)						
		Р	*ZZ mit aufgebautem Pilotventil PVAC1P 2)						

⁴⁾ Reglerausführung Z & B ohne Maximaldruckeinstellung

	Code		Reglerausführung			
	Elektrohydraulische Regelung ⁵⁾					
F	D	٧	Proportionalhubvolumenregelung, keine Maximaldruckregelung			
U	D		Proportionalhubvolumenregelung mit Maximaldruckregelung			
Ausführung						
		R	vorgesteuerter Druckregler, NG6 Lochbild			
		K	vorgesteuerter Druckregler (wie UDR), mit Proportionalpilotventil PVACREK35 aufgebaut			
		М	vorgesteuerter Druckregler mit Proportionalventil (wie UDK), mit Drucksensor für elektronische Druck- und Leistungsregelung			

⁵⁾ weiterführende Informationen siehe MSG30-3254

