

Axialkolbenpumpen

Serie PVplus
Verstellbare Ausführung

Einführung

Mit Durchtrieb für Einfach- und Mehrfachpumpen

Axialkolbenpumpen

Serie PVplus

Technische Merkmale

- geräuscharm
- kurze Regelzeit
- servicefreundlich
- hohe Maximaldrehzahl
- kompaktes Design
- 100% Drehmomentübertragung

Allgemeine Information

Empfohlene Flüssigkeit

Qualitativ hochwertige mineralische Hydraulikflüssigkeit, z. Bsp. HLP Öle nach DIN 51524, Teil 2, empfohlene Brugger-Werte für allgemeine Anwendungen mindestens $30 \mathrm{~N} / \mathrm{mm}^{2}$ und für hochbelastete Anlagen $50 \mathrm{~N} / \mathrm{mm}^{2}$, gemessen nach DIN 51 347-2, siehe auch Dokument HY30-3248/DE Parker "Hydraulik Flüssigkeit"

Viskosität

Viskosität unter normalen Bedingungen sollte bei 16 bis $100 \mathrm{~mm}^{2} / \mathrm{s}$ (cSt) liegen. Maximale Anlaufviskosität ist $1000 \mathrm{~mm}^{2} / \mathrm{s}$ (cSt).

Reinheit

Die Reinheit der Flüssigkeit sollte in Übereinstimmung mit ISO 4406:1999 gegeben sein. Wirkungsvolle Filtration sorgt für maximale Funktion der Pumpen und Systemkomponenten.

Auch die Filterelemente sollten ISO-Standard entsprechen. Für maximale Lebensdauer Reinheitsgrad 18/16/13 entsprechend ISO 4406:1999; sonst Reinheitsgrad 20/18/15 entsprechend ISO 4406:1999.

Dichtungen

Bitte die Verträglichkeit des Dichtungsmaterials mit der Fluidspezifikation prüfen.
Temperaturbereich des Dichtungsmaterials mit maximaler System- und Umgebungstemperatur abgleichen.

$$
\begin{array}{ll}
\mathrm{N}-\text { Nitrile (FKM Wellendichtring) } & -40 \ldots+90^{\circ} \mathrm{C} \\
\mathrm{~V}-\mathrm{FKM}(F K M \text { Wellendichtring) } & -25 \ldots+115^{\circ} \mathrm{C} \\
\mathrm{~W}-\text { Nitrile (PTFE Wellendichtring) } & -30 \ldots+90^{\circ} \mathrm{C}
\end{array}
$$

Bitte beachten: Die höchste Temperatur, bis zu $+25^{\circ} \mathrm{C}$ über Zulauftemperatur, kann am Leckölanschluss entstehen.

		PV016	PV020	PV023	PV028	PV032	PV040	PV046
Baugröße		1	1	1	1	2	2	2
Max. Verdrängungsvolumen	$\left[\mathrm{cm}^{3} / \mathrm{U}\right.$	16	20	23	28	32	40	46
Fördermenge bei 1.500 U/min	$[1 / \mathrm{min}]$	24	30	34,5	42	48	60	69
Nominaldruck pN	$[\mathrm{bar}]$	350	350	350	350	350	350	350
Minimaldruck Hochdruckseite	$[\mathrm{bar}]$	15	15	15	15	15	15	15
Maximaldruck Pmax 20\% vom Arbeitszyklus ${ }^{1)}$	$[\mathrm{bar}]$	420	420	420	420	420	420	420
Max. Gehäusedruck, permanent	$[\mathrm{bar}]$	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Max. Gehäusedruck, Druckspitzen	$[\mathrm{bar}]$	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Min. Eingangsdruck absolut	$[\mathrm{bar}]$	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Max. Eingangsdruck	$[\mathrm{bar}]$	16	16	16	16	16	16	16
Eingangsleistung bei 1.500 U/min, 350 bar	$[\mathrm{kW}]$	15,5	19,5	22,5	27,5	31	39	45
Höchstdrehzahl bei Einlassdruck 1 bar abs.	$\left[\mathrm{min}^{-1}\right]$	3000	3000	3000	3000	2800	2800	2800
Minimaldrehzahl	$\left[\mathrm{min}^{-1}\right]$	50	50	50	50	50	50	50
Massenträgheitsmoment	$\left[\mathrm{kgm}^{2}\right]$	0,0017	0,0017	0,0017	0,0017	0,0043	0,0043	0,0043
Gewicht	$[\mathrm{kg}]$	19	19	19	19	30	30	30

		PV063	PV080	PV092	PV140	PV180	PV270	PV360
Baugröße		3	3	3	4	4	5	6
Max. Verdrängungsvolumen	$\left[\mathrm{cm}^{3} / \mathrm{U}\right]$	63	80	92	140	180	270	360
Fördermenge bei 1.500 U/min	$[\mathrm{lmin}]$	94,5	120	138	210	270	405	540
Nominaldruck pN	$[\mathrm{bar}]$	350	350	350	350	350	350	350
Minimaldruck Hochdruckseite	$[\mathrm{bar}]$	15	15	15	15	15	15	15
Maximaldruck Pmax 20\% vom Arbeitszyklus1)	$[\mathrm{bar}]$	420	420	420	420	420	420	420
Max. Gehäusedruck, permanent	$[\mathrm{bar}]$	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Max. Gehäusedruck, Druckspitzen	$[\mathrm{bar}]$	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Min. Eingangsdruck absolut	$[\mathrm{bar}]$	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Max. Eingangsdruck	$[\mathrm{bar}]$	16	16	16	16	16	16	16
Eingangsleistung bei 1.500 U/min, 350 bar	$[\mathrm{kW}]$	61,5	78	89,5	136	175	263	350
Höchstdrehzahl bei Einlassdruck 1 bar abs.	$\left[\mathrm{min}^{-1}\right]$	2800	2500	2300	2400	2200	1800	1750
Minimaldrehzahl	$\left[\mathrm{min}^{-1}\right]$	50	50	50	50	50	50	50
Massenträgheitsmoment	$\left[\mathrm{kgm}^{2}\right]$	0,018	0,018	0,018	0,030	0,030	0,098	0,103
Gewicht	$[\mathrm{kg}]$	59	59	59	90	90	172	180

1) Einstellbereich des gewählten Reglers prüfen.

2) für separate Bestellung als Einzelteil siehe Seite 61.

Code	Anschluss 4)	Gewinde $^{\mathbf{5}}$
$\mathbf{1}$	BSPP	metrisch
3	UNF	UNC
8^{6}	ISO 6149	metrisch

4) Lecköl-, Manometer- und Spülanschluss
5) alle Anschraub- und Befestigungsgewinde
${ }^{6)}$ nur für Anbauflansch, Code K und L

Standard Pumpe ist nicht lackiert. Schwarz lackierte Pumpe und ATEX (exkludiert elektronisches Zubehör) Zertifikat (Zone 2) sind als Sonderoption erhältlich. Für weitere Informationen kontaktieren Sie bitte Parker Hannifin.

Axialkolbenpumpen
Bestellschlüssel Baugröße 1

Code			Reglerausführung
0	0	1	ohne Regler
1	0	0	mit Verschlussplatte, keine Reglerfunktion (Konstantpumpe)
M	M		Standard- Druckregler
M	R		Druckregler mit Fernsteuer-Anschluss
M	F		Druck-Förderstrom-Regler (Load-Sensing)
M	T		Zwei- Ventil- LS-Regler
			Regler Variation
		C	Standardausführung mit integriertem Druck-Pilotventil ${ }^{1)}$
		1	Lochbild NG6 auf Regleroberseite
		2	Druckfernsteueranschluss interne Versorgung, NG6-Lochbild ${ }^{\text {2) }}$
		3	Druckfernsteueranschluss externe Versorgung ${ }^{\text {2) }}$
		W	mit Drucklosschaltung, 24VDC Magnet ${ }^{1)}$
		K	Prop.-Pilotventil Typ PVACRE...K35 aufgebaut
		Z	ohne integriertes Druck-Pilotventil, NG6-Lochbild, zum Aufbau von Zubehör Code PVAC*
		B	ohne integriertes Druck-Pilotventil, ohne NG6-Lochbild ${ }^{3)}$
		P	MT1 mit aufgebautem Pilotventil PVAC1P ${ }^{\text {2) }}$

1) nicht für MT \& *Z
2) nur für MT
3) nicht für MT \& MM
4) Reglerausführung Z \& B ohne Maximaldruckeinstellung

| Code | | Reglerausführung |
| :--- | :--- | :--- | :--- |
| Elektrohydraulische Regelung ${ }^{\text {5 }}$ | | |

5) weiterführende Informationen siehe HY30-3254

Katalog MSG30-3245/DE

Druckregler

Standard Druckregler mit NG 6 Lochbild, Code MM1

Mit dem Code *MM1 hat der Standarddruckregler ein NG 6 Lochbild DIN 24340 (CETOP 03 entspr. RP35H, NFPA D03) auf der Oberseite.

Dieses Interface ermöglicht den direkten Aufbau von Zubehörteilen, wie Druckstufenschaltungen, ohne Notwendigkeit externer Verrohrung.

Standarddruckregler mit elektrischer Entlastung,

Code MMW

Mit Code *MMW ist ein Magnetwegeventil (D1VW002KNJW) auf der Oberseite des Reglers aufgebaut.

Ist das Magnet nicht bestromt, regelt die Pumpe auf den typischen Stand-by Druck von 15 bar.
Wenn das Magnet bestromt ist, wird die Pumpe auf den am integrierten Pilotventil eingestellten Druck geregelt.

Standarddruckregler mit proportional Pilotventil,

Code MMK

Mit Code *MMK ist ein proportional Pilotventil vom Typ PVACRE...K35 (siehe Seite 43) auf der Oberseite des Reglers aufgebaut.

Diese Variante erlaubt eine variable Einstellung des Regeldruckes durch ein elektrisches Eingangssignal zwischen 20 und 350 bar.

Standarddruckregler ohne integriertes Druck-Pilotventil

Code MMZ
Dieser Regler verfügt nicht über das integrierte Pilotventil. Er besitzt ein NG6 DIN 24340 Lochbild auf der Oberseite zum Aufbau weiterer Druckstufen und Regelfunktionen.

Für Nenndruck >350 bar bitte entsprechendes Reglerzubehör auswählen (siehe Seite 40)

